

DOCUMENTO CONT	ROLADO DEL MANUAL DE DOCUMENTACIÓN DE PROCESOS
NOMBRE PROCESO	Metodología homologada para realizar estudios de fragmentación, motores de fragmentación y conectividad ecológica del paisaje amazónico colombiano, en tres diferentes ámbitos de alcance geográfico: regional, subregional y local
NOMBRE PROTOCOLO	Protocolo de implementación de la metodología homologada para realizar estudios de fragmentación, motores de fragmentación y conectividad ecológica del paisaje amazónico colombiano, en el ámbito regional (1:100.000)
METODOLOGÍA	Fragmentación, Motores de fragmentación y Conectividad ecológica
ESCALA	1:100.000
UBICACIÓN DIGITAL	

CONTROL DE DOCUMENTOS*						
VERSIÓN	FECHA	ELABORADO	REVISADO	APROBADO	MODIFICACIONES	
1.0	15/01/2019	Laboratorio SIG - Sinchi				

*NOTA: Aumentar filas según necesidad.

TABLA DE CONTENIDO

1.	INTF	RODUCCIÓN	81
2.	ANÁ	LISIS DE FRAGMENTACIÓN	81
	2.1 Índi	ce de Fragmentación	81
	2.2 Uni	dades de análisis y patrones de fragmentación	87
	2.3. lde	ntificación y asociación entre unidades de análisis y variables explicativas	93
	2.3.1	Identificación de variables	95
	2.3.2	2. Asociación de variables y explicativas y unidades de fragmentación	113
3.	МОТ	ORES DE FRAGMENTACIÓN	117
	3.1.	Identificación y espacialización de motores de fragmentación	117
	3.1.1	Identificación de variables	118
	3.1.2	Espacialización de motores de fragmentación	122
	3.2 CO	RRELACIÓN ENTRE MOTORES	128
4.	ANÁ	LISIS DE CONECTIVIDAD ECOLÓGICA – ÁMBITO REGIONAL	131
	4.1.	Matriz General de Resistencia – Índice Espacial de Huella Humana (IEHH)	132
	4.1.1	Variable Intensidad Uso de la Tierra - CT (Clus)	134
	4.1.2	2 Variable de Resistencia a Rondas Hídricas - DD (CRrh)	135
	4.1.3	Variable de Resistencia Vías o Accesos Terrestres - DV (CRat)	138
	4.1.4	Variable de Resistencia Centros Poblados - DP (CRcp)	142
	4.1.5	Variable de Resistencia a Explotación de Recursos No Renovables - DNR (CMnr)	145
	4.1.6	Variable de Fragmentación - IF (CRfg)	149
	4.1.7	Variable de Dinámica de Transformación de Coberturas - DT (CDtc)	152
	4.1.8	Variable Vocación de los Suelos - VS (CVco)	157
	4.1.9	Variable de Resistencia Pendiente - P (CRpe)	159
	4.1.1	0 Variable de Aislamiento de Hábitat Remanente - AHR (CAhr)	164
	4.1.1	1 Variable de Porcentaje de Hábitat Transformado - PHT (CPht)	166
	4.1.1	2 Variable de Índice de la Transformación de Hábitats - IET (Clet)	170
	4.2.	Modelación de Áreas Núcleo	173
	4.3.	Corredores de Conectividad	182

		Código: FP-CCOB-4
Instituto amazoneo de SINCHI		Versión: 1.0
4.3.1 Matriz de Corrien	te Eléctrica - CircuitScape	
4.3.2 Corredores de Co	onectividad – Linkage Mapper	

1. INTRODUCCIÓN

El Instituto SINCHI ha desarrollado el protocolo específico para la implementación de la metodología homologada para realizar estudios de fragmentación, motores de fragmentación y conectividad ecológica del paisaje amazónico colombiano, en el ámbito regional a escala 1:100.000 teniendo en cuenta diferentes recursos de información tanto del Instituto como de entidades territoriales del orden nacional.

Mediante el uso de diferentes herramientas computacionales se describe el procedimiento paso a paso de la implementación de la metodología a escala Regional, basado en los modelos cartográficos por proceso y los insumos para el procesamiento se procede a describir el uso de las herramientas que finalmente describen los resultados de la implementación metodológica.

2. ANÁLISIS DE FRAGMENTACIÓN

2.1 Índice de Fragmentación

Como parte del análisis regional mediante la implementación de la metodología homologada, se procede a analizar la fragmentación del paisaje en el área de la Amazonía. Para la generación del índice de fragmentación se utilizan las coberturas del suelo del periodo 2016 generado por el Instituto SINCHI.

Los insumos necesarios para el análisis son:

- 1. Capa de Coberturas del Suelo año 2016 (CCob2016v1)
- 2. Grilla del MGN del IDEAM
- 3. Unidades del paisaje de la región de estudio
- 4. Límite Área de estudio Regional SINCHI (DLim)

Con la información anterior se procede a desarrollar el procedimiento descrito en el flujograma a continuación:

Inicialmente se deben adicionar 3 columnas nuevas a los atributos de la capa CCob2016v1: Tipo, Categoría y Valor de acuerdo a la siguiente tabla:

COREDTUDA	TIDO	RESISTENCIA		
COBERTURA	ПРО	VALOR	CATEGORÍA	
Aeropuertos	Transformado	100	5	
Explotación de hidrocarburos	Transformado	100	5	
Tejido urbano continuo	Transformado	100	5	
Tejido urbano discontinuo	Transformado	100	5	
Tierras desnudas y degradadas	Transformado	100	5	
Zona de extracción minera	Transformado	100	5	
Zonas industriales o comerciales	Transformado	100	5	
Zonas quemadas	Transformado	100	5	
Arroz	Transformado	90	5	
Pastos limpios	Transformado	90	5	
Pastos enmalezados	Transformado	80	5	
Mosaico de pastos y cultivos	Transformado	70	5	
Palma de aceite	Transformado	70	5	
Plantación forestal	Transformado	70	5	
Estanques para acuicultura continental	Transformado	65	3	
Mosaico de cultivos	Transformado	60	3	

Tabla 1. Tipo, Categoría y Valor de Coberturas del Suelo CCob2016v1

FORMATO: PROTOCOLO

Código: FP-CCOB-4

Versión: 1.0

	TIDO	RESIS	RESISTENCIA		
CODERTURA	TIPO	VALOR	CATEGORÍA		
Mosaico de cultivos con espacios naturales	Transformado	60	3		
Mosaico de cultivos, pastos y espacios	Transformado				
naturales	Transiornauo	60	3		
Mosaico de pastos con espacios naturales	Transformado	60	3		
Pastos arbolados	Transformado	60	3		
Bosque fragmentado con pastos y cultivos	Transformado	35	3		
Vegetación secundaria o en transición	Transformado	35	3		
Herbazal denso inundable no arbolado	Natural	35	3		
Afloramientos rocosos	Natural	30	1		
Herbazal denso de tierra firme no arbolado	Natural	30	1		
Lagunas, lagos y ciénagas naturales	Natural	30	1		
Ríos	Natural	30	1		
Zonas arenosas naturales	Natural	30	1		
Zonas pantanosas	Natural	30	1		
Herbazal denso de tierra firme con arbustos	Natural	25	1		
Herbazal denso inundable arbolado	Natural	25	1		
Herbazal abierto rocoso	Natural	20	1		
Herbazal denso de tierra firme arbolado	Natural	20	1		
Arbustal abierto mesófilo	Natural	15	1		
Arbustal denso	Natural	15	1		
Herbazal abierto arenoso	Natural	15	1		
Bosque fragmentado con vegetación	Transformado				
secundaria	Transiornauo	10	1		
Palmar	Natural	10	1		
Bosque de galería y ripario	Natural	1	1		
Bosque denso alto de tierra firme	Natural	1	1		
Bosque denso alto inundable heterogéneo	Natural	1	1		
Bosque denso bajo de tierra firme	Natural	1	1		
Bosque denso bajo inundable	Natural	1	1		

El proceso para adicionar campos consta de abrir la Tabla de Atributos y entrar a Table Option – Add Field, allí se diligencia el nombre del nuevo atributo y el tipo de dato que se cargaría en este.

Restore Default Column Widths Restore Default Field Order Joins and Relates

Related Tables Create Graph... Add Table to Layout Reload Cache Print...

Reports

Se clasifica la capa de Coberturas de acuerdo al Tipo (Natural y Transformado) para posteriormente cruzarlo con las teselas que dividirán el área de trabajo en secciones más pequeños que ingresarán al software GUIDOS y generar el índice de Fragmentación usando la herramienta "Entropy".

t of 67690 Selected

ransformac

Teniendo en cuenta que se generarán capas con resolución a 30 metros y una cantidad de 538'453.680 pixeles, es necesario buscar alternativas de división de la información para trabajar por lotes. La manera más simple para esto es utilizar el Marco Geoestadístico Nacional – MGN del IDEAM, sin embargo, los tamaños de las grillas aún así son pequeños por lo que se procede a generar una tesela de 240 Km X 240 Km para posteriormente dividir el área de trabajo y procesarlo en el software Guidos que genera el Índice de Fragmentación con su herramienta "Entropy". Para generar la Tesela se utiliza la herramienta "Generate Tessellation" que se encuentra en **Data Management Tools – Sampling – Generate Tessellation**. Se debe tener en cuenta que el Extent de las teselas serán teniendo en cuenta el Límite SINCHI (DLim2014) y el tamaño de la tesela es el área de un cuadrado de 240 Km (240 KmX240 Km = 57.600 Km2)

El ambiente viaembiente	ΕΩRΜΑΤΩ· ΡΒΟΤΩΩΟΙ Ο	Código: FP-CCOB-4
Instituto amazonico de SINCHI		Versión: 1.0
	Generate Tessellation – – × Output Feature Class TATRAL (EPF 5_Corredores) 6 SIG(6 Geodata\Shapefiles\1 Temático\Área Interés\CCua2018v1_240km.shp Extent Same as layer DLIM2014 Top 4,948186 Right 770,670617 Bottom 4,225780 Shape Type (optional) SQUARE Size (optional) SQUARE Size (optional) State Type (optional) MAGNA_Colombia_Bogota	

Como resultado se tienen las teselas que dividirán el área de trabajo para el procesamiento por Lotes:

OK Cancel Environments... Show Help >>

Teniendo la cuadricula y la capa de Coberturas del Suelo clasificadas en Natural y Transformado, se procede a dividir el Raster en cada tesela para el procesamiento por Lotes en el Software GUIDOS. Para este procedimiento se procede a utilizar la herramienta "Split" que se encuentra en la ruta **Analysis Tools – Extract – Split**:

El ambiente		Código: FP-CCOB-4
Instituto amazonico de SINCHI	TORMATO, PROTOCOLO	Versión: 1.0
	Split — X Toput Features CCCb2016/r1/Classs Split Features CCcu2018/r1/240Km Split Field GRUD_D Target Workspace F:PrBEELANCE PATRIMONID_INATURAL (SEP5_Corredores)6 SIG(6 Geodata (Raster VFragmentacion_Entrop) XY Tolerance (optional) Meters	

Teniendo las teselas de información de los tipos de Coberturas, se procede crear archivos Raster y a reclasificarlas en 3 clases (NoData=NoData, 0=Background y 1=Foreground) en donde se diferencian los pixeles sin valor, los pixeles que hacen parte del tipo natural y los pixeles que hacen parte del tipo transformado. Estos Raster reclasificados son los que ingresarán al software GUIDOS y serán procesados mediante la herramienta "Entropy".

Estando en GUIDOS, para generar los índices por cada sección se debe cargar la información en File – Read Image – Geotiff y se selecciona una a una las secciones reclasificadas en 0, 1 y 2, posterior a que se carga la imagen se va a la herramienta Image Analysis – Fragmentation – Index – Entropy y se corre la herramienta dando como resultado el índice de fragmentación de cada sección, se guarda haciendo File – Save Image y se procede de igual manera con la siguiente sección.

Dicho procedimiento se repite por cada sección y al final se procede a hacer la unión de todas las partes y se genera un nuevo Raster haciendo uso de la herramienta de ArcGIS llamada "Mosaic to New Raster" que se encuentra en **Data Management Tools – Raster – Raster Dataset – Mosaic to New Raster** dando como resultado el índice de Fragmentación (CFrg201v1).

NOTA: Es importante tener en cuenta que para que al momento de procesar la información en GUIDOS es necesario dejar la información de insumo (Raster reclasificados) en la carpeta por default del programa llamada Data (C:\GuidosToolbox\data) de lo contrario el sistema mostrará errores. De igual manera, es importante tener en cuenta que el tamaño máximo de pixeles en una imagen a ser procesada en Guidos es de 31.000 X 31.000 por lo que es necesario revisar la información de insumo antes de procesarla.

2.2 Unidades de análisis y patrones de fragmentación

Las unidades análisis que se definieron para trabajar el tema de fragmentación fue el resultado de la intersección espacial entre el índice de fragmentación, las unidades fisiográficas y los patrones de fragmentación. Como primera medida, se realiza unas unidades de análisis preliminares que resultan del cruce espacial entre el índice de fragmentación y las unidades fisiográficas. A este resultado, se le calculan distintas métricas del paisaje, para evaluar el patrón de fragmentación que se genera dentro de cada unidad fisiográfica y dentro de cada grado de fragmentación.

Los insumos necesarios para el análisis son:

- 1. Capa de Coberturas de la tierra año 2016 (CCob2016v1)
- 2. Unidades del paisaje fisiográficas de la región de estudio
- 3. Límite Área de estudio Regional SINCHI (DLim)

Con la información anterior se procede a desarrollar el procedimiento descrito en el flujograma a continuación:

La capa raster del índice de fragmentación (CRfg2018v1.tiff) que se encuentra categorizada en 1,2 y 3, se convierte a un archivo tipo vector (CRfg2018v1.shp) para hacer una intersección espacial con la capa de unidades fisiográficas. Este proceso se genera haciendo uso de la herramienta de ArcGIS llamada Polygon to Raster.

	Matter to Holygon	
bysk nater hytinoci spetitik (ACOTYPUK, IPAKISpilly20 zijn L.ef Node bartonik) Obgat polygen fantares c. Swenytic CALOD commentarios perfectis, gels chilgtonic Lara	Converts a naster of	gon
(K Snahl udgan latinut		
OK Groat Bruren	au (contra) [Tatra	

Con el archivo vector del índice de fragmentación, se hace una intersección con la capa de unidades fisiográficas. Este proceso se genera haciendo uso de la herramienta de ArcGIS llamada **Intersect**. De este proceso, se genera un archivo vector para cada unidad de análisis, por ejemplo, Peniplanicie-Fragmentación alta. En este sentido, todos los procesos descritos a continuación se deben realizar por separado por unidad de análisis.

Institute SINCHI	FORMATO: F	PRC	TOCOLO	Código: FP-CCOB-4 Versión: 1.0
	Papel, Produces Papel, Produce		Couput Feature Class The output feature class.	

Cada una de las unidades convertidas a formato vector son intersectadas con la capa de coberturas de la tierra (CCob2016v1), de tal manera que se obtendrá como resultado capas vector para unidad de análisis, en donde la tabla de atributos diferencia las coberturas naturales y transformadas que existen dentro de cada unidad. Este proceso se genera haciendo uso de la herramienta de ArcGIS llamada Intersect. Como resultado se obtiene un archivo tipo vector para cada unidad con sus respectivas coberturas; por ejemplo, Peniplanicie- Fragmentación alta- Coberturas.

	Inters	ect		- 0 ×
nput Features			Output Feature Class	
			The output feature class.	
Features	Ranks	-		
3: \SINCHI1\RESULTADOS\FINAL\FRAG\CCob2016v1.shp		×		
31/binCh11/kESUL1ADOS/PINAL/PKAS/Pentragata.srp		-		
		T		
		L		
(
Autout Feature Class				
C:\Lisers\WICOLAI\Documents\ArcGIS\Default1.gdb\PeniFragAltaCob		8		
(onAttributes (optional)				
ALL		~		
(Y Tolerance (optional)				
M	eters	~		
Dutput Type (optional)				
peor				
			~	
OK Cancel Environm	ments <<	Hide Help	Tool Help	

100	These I	-	CONTINUE	L ADEA ha	Tex	
-	Dations	~	Unanite de cultures mentres o espectine patronies	224 985421	Trace formate	
	Dekons		Destruction Controls, paralos y espectos mesarante	12/13 2000441	Transformatio	
	Dekoon	76	Maaaino da caalina u rulikuna	1770 704776	Transformatio	
	Dokone	20	Laturas latas y canada aturales	4207 731812	Natural	
- 4	Datures	30	Magains da nastra y rulluta	1779 254775	Transformatio	
- 6	Enkonn	30	Laturas Janes y rienanas naturales	4207 731612	Natural	
- 2	Polynos	24	lineaire de casine y cultures	1779 794775	Transformatio	
7	Palyaon	31	Laburtas, labos y cienanas naturales	4207 731612	Natural	
÷.	Polygon	47	Mosaico de pastos y cultura	1779 794775	Transformato	
- 0	Polygen	47	Lagunas lagos y cenagas naturales	4207 731612	Sistural	
10	Pelveon	48	Mosaico de pastos y culture	1779.794775	Transformado	
11	Palvana	45	Laturas, jatos y cienanas naturales.	4207 731612	Natural	
17	Palyane	49	Unsairo de nastos y cultura	1779 794775	Transformatio	
12	Palvoon	40	Laturias, latos y cienadas naturales	4207 731612	Natural	
14	Polygon	50	Nosaico de castos y cultura	1779 794775	Transformado	
15	Polygon	50	Lagunas, lagos y cienagas naturales	4207 731812	Natural	
16	Polygon	52	Mosaico de pastos y cultivos	1779.794775	Transformado	
17	Palvoon	52	Lagunas, lagos y cienagas naturales	4207.731612	Natural	
18	Polygon	53	Mosaico de pastos y cultivos	1779.794775	Transformado	
19	Polygon	53	Lagunas, lagos y cienagas naturales	4207 731612	Natural	
20	Polygon	54	Mosaico de pastos y cultivos	1779.794775	Transformado	
21	Polygon	54	Lagunas, lagos y cienagas naturales	4207.731612	Natural	
22	Polygon	55	Pastos Impios	12473.709894	Transformado	
23	Polygon	56	Pastos Impios	12473.709094	Transformado	
24	Polygon	58	Pastos impios	12473 709894	Transformado	
25	Polygon	59	Wosaico de pastos con espacios naturales	266.548719	Transformado	
26	Polygon	50	Pastos Impios	12473.709894	Transformado	
27	Polygon	:60	Tejdo urbano continuo	75.660321	Transformado	
28	Polygon	60	Tejdo urbano continuo	60.610641	Transformado	
29	Polygon	60	Tejido urbano continuo	119.299961	Transformado	
30	Polygon	60	Tejdo urbano discontinuo	16.384942	Transformado	
31	Polygon	60	Pastos Impios	141.710752	Transformado	
32	Polygon	60	Vosaico de pastos y cultivos	169.477573	Transformado	
33	Polygon	60	Mosaico de pastos y cultivos	344.352274	Transformado	

Cada una de las unidades anteriores son convertidas a formato raster, utilizando el campo tipo, el cual hace referencia a la categoría de coberturas (transformado y natural). Este proceso se genera haciendo uso de la herramienta de ArcGIS llamada **Polygon to Raster.**

	Polygon to	Raster		×
Input Features			Cellsize (optional)	Ī
J:\SINCHI1\RESULTADOS\FINAL\FRAG\PeniFragAlta	Cob.shp 💌	8		
Value field			The cell size for the output raster dataset.	
Tipo		*	The defends well give in the sheetest of the width or beinks	
Output Raster Dataset			of the extent of the input feature dataset in the output	
C: Users (NICOLAI (Documents (ArcGIS (Default Lgdb) Penil	FragAltaCob	8	spatial reference, divided by 250.	
Cell assignment type (optional) CELL_CENTER				
Priority field (optional)				
NONE				
Celsize (optional)				
500		8		
		. ~		

Para cada una de estas capas intermedias (PeniplaFragAltaCob), se exporta la tabla de atributos a una archivo .txt, mediante la el uso de la herramienta de ArcGIS llamada **Export**, que se encuentra ubicada dentro de la ventana de la tabla de atributos de cada archivo raster.

Tabl	e		×
旦•	🔁 - I 🔓 🚱 🛛 🖉 🗙		
A	Find and Replace		×
5	Select By Attributes		-
13	Clear Selection		
9	Switch Selection	-	
	Select All		
	Add Field		
	Turn All Fields On		
~	Show Field Aliases		
	Arrange Tables	<u>)</u>	
	Restore Default Column Widths		
	Restore Default Field Order		
	Joins and Relates		
	Related Tables	•	
-	Create Graph		
	Add Table to Layout		
2	Keload Cache		
8	Print		
	Feports		
	Anneral		
-	Export		
	Exports the table to a	new table.	
			-
14	4 Тэн 📃 🗖	(0 out of 2 Selected)	
cob			

La tabla de atributos .txt ya exportada, es necesario editarla de tal manera que se eliminen los enunciados de las columnas y las filas, y que solo queden los nombre de las categorías de las coberturas seguidas por ,true,false y enumeradas con 1 y 2 .

El cálculo de las métricas del paisaje que permitirán evaluar el patrón de fragmentación para cada unidad de análisis, son estimadas mediante el **software fragstats**. De tal manera, que los archivos tipo raster y la tabla de atributos previamente editada para cada unidad, son los insumos principales que utiliza el programa para el cálculo de métricas o indicadores.

Dentro del **software fragstats** se selecciona la opción **run parameters**, y allí se llenan los parámetros referentes al tipo de archivo, al cálculo por vecindad y al tipo de estadísticas. En esta misma ventada se introducen el archivo raster y la tabla .txt previamente generados para cada unidad de análisis. El tipo de **archivo es Grid**, se calculan las estadísticas **tipo clase**, y al cálculo de vecinos es para un regla de **8 lados**, el resto de parámetros se dejan como están por defecto.

			Run Parameters
File Promess To File Promess To File Promess To File Promess To Event1 Getting	Fragstats 3.3 (ArcGrid enabled) - Sin titulo ook Help 에 소 (해외 박물) gar options	- • •	Bit Binary Celicia (morent) C 288 Binary C 288 Binary
Ready <			C IDRISI Number of Columns (b) State Class properties (i) Class properties (i) Class properties (i) Class and Output (D Image Class for the function of the function

Una vez seleccionados los parámetros, se eligen las métricas que se quieren estimar. Para esto en el mismo el **software fragstats** se selecciona la opción **class metrics**. Para este caso en particular, las métricas a calcular son, **porcentaje de área, circle, número de parches, distancia al vecino más cercano y cohesión.**

Después de elegir las métricas a calcular, se corre el <u>m</u> proceso y como resultado se obtiene una tabla que arroja los valores de cada métrica para las coberturas naturales y transformadas de cada unidad de análisis. La tabla resultado, muestra tres pestañas, en este caso la pestaña **Class** contiene las métricas, las cuales se deben guardar con **Save run as**..y abrir posteriormente en **excel** para calcular el índice de patrón de fragmentación.

		Results			×
LID (2) J:\Sinchi1\Re (2) J:\Sinchi1\Re	TYPE Transformado Natural	CA 11040.0000 103.0000	NP 36 77	TCA 9233.0000 0.0000	Run H2 Run H2 Run #1
<				>	✓ Save ADJ file Save run as Clear all Clear this Close
Patch Class Land	J		_		

Una vez calculados todas las métricas para cada unidad de análisis, se estima el índice de patrón de fragmentación mediante la siguiente formula:

 $indice = \frac{\% + irea \, nicleo + cohesion}{\# \, de \, parches + circle + distancias} \, x \, 100$

Los valores más altos se relacionan con aquellas áreas con menor grado de fragmentación, mientras que los más bajos indican espacios bastante fragmentados, con relictos de coberturas naturales. Los patrones de fragmentación de tipo geométrico, parche y espina de pescado, se asocian a valores bajos, mientras que los patrones difuso, corredor e isla, se asocian a valores del índice más altos para las coberturas naturales.

Cada capa (shape) de unidad de análisis, fisiografía-grado de fragmentación, es editada asignándole el resultado final del índice de patrón de fragmentación, de tal manera que como resultado final queda una capa que hace referencia a la fisiografía, el grado de fragmentación y el patrón de fragmentación (ej. PeniplaFragAltaGeometrico). Las capas finales de cada unidad de análisis, deben ser cargadas a un solo archivo, así toda la información queda consolidada en una sola capa cartográfica, en donde los campos del shape describen temáticamente cada polígono. Dicho archivo se nombró "CUan2018v1"

2.3. Identificación y asociación entre unidades de análisis y variables explicativas

Para caracterizar los procesos de fragmentación se hace una asociación entre las unidades de análisis y las diferentes variables que pueden explicar estos procesos. Para lo anterior, se hace una espacialización de las posibles variables explicativas, de las unidades de análisis y mediante el

software maxent, se estima la asociación que existe entre estas. Los análisis anteriores generan una serie de mapas, tablas y gráficas que ayudan a entender cuáles son las principales causas que generan la ocurrencia de las diferentes unidades de fragmentación. Las variables explicativas que se tuvieron en cuenta fueron:

TIPO DE CRITERIO	VARIABLE
Criterios biofísicos	Pendiente (%)
	Coberturas de la tierra
	Distancia a explotación recursos no renovables
Critorios essis	Distancia a centros poblados
económicos	Distancia a vías
	Uso del suelo

Los insumos necesarios para el análisis son:

- 1. Capa de Coberturas de la tierra año 2016 (CCob2016v1)
- 2. Capa de Vías (Transporte Terrestre IGAC 100K)
- 3. Centros Poblados MGN_URB_AREA_CENSAL (MGN DANE)
- 4. Títulos Mineros (TITULOS SINCHI)
- 5. Capa de Vocación del Suelo del IGAC (ag_100k_vocacion_uso_2017_magna_AMZtt)
- 6. DEM Colombia 30 metros
- 7. Unidades de análisis (Fisiografía-grado de fragmentación-Patrón)
- 8. Límite Área de estudio Regional SINCHI (DLim)

Con la información anterior se procede a desarrollar el procedimiento descrito en el flujograma a continuación:

2.3.1 Identificación de variables

El ambiente es de todos

Û

Instituto

2.3.1 .1 Variable de Vías o Accesos Terrestres - DV (CRat)

Los insumos necesarios para el procesamiento son:

- 1. Capa de Vías (Transporte Terrestre IGAC 100K)
- 2. Límite Área de estudio Regional SINCHI (DLim)

Con la información anterior se procede a desarrollar el procedimiento descrito en el flujograma a continuación:

La capa de Vias se obtiene del dataset Accesos Terrestres de la Base de datos de cartografía básica generada por el Instituto Geográfico Agustín Codazzi – IGAC a escala 1:100.000. Al ser una base de datos geográfica a nivel nacional es necesario cortar las vías que se encuentran de nuestra área de estudio por lo que se procede a hacer un Clip a las vías usando la herramienta Clip que se encuentra en **Analysis Tools – Extract – Clip**.

in Clip —			×
Input Features			~
Via	•	2	
		_	
DLIM2014	•	6	
Output Feature Class		_	
D: \FREELANCE \PATRIMONIO NATURAL \PROCESOS \SHP\Vias_SINCHI.shp		6	
XY Tolerance (optional)			
Decimal degree	s	\sim	
OK Cancel Environments S	ihow H	lelp >>	

Teniendo las vías del área de estudio regional únicamente se procede a general la matriz de distancia mediante el uso de la herramienta **Euclidian Distance** que se encuentra en la Caja de herramientas **Spatial Analyst Tools – Distance – Euclidean Distance**. Las variables cargadas en esta herramienta son básicamente la nueva capa de Vías de la Zona de estudio regional (Vías_SINCHI) y los parámetros de cálculo son: tamaño de celda 30 metros; Extent del proceso es el límite SINCHI (Environments) y ruta de archivo de salida.

🔨 Euclidean Distance — 🗆 🗙	🛠 Environment Settings X
Input raster or feature source data Vias_SINCH Culput distance raster F:YREELANCE/PATRIMONIO_INTURAL/SEF5_Corredores/6 SIG/6 Geodata/Raster/SupContVariables/RF(z)	
Output cell size (optional) b0 Output direction raster (optional) Dutput direction raster (optional) Dutput direction raster (optional) Dutput direction raster (optional)	Top 4,948186 Left Right -77,670617 Bottom -4,225780 Snap Raster
~	X Y Resolution and Tolerance V H Values Z Values Conductabase
CK Cancel Environments Show Help >>	OK Cancel Show Help >>

NOTA: Es importante tener en cuenta que esta herramienta requiere de la estabilidad del equipo y la memoria RAM por lo que se recomienda inicialmente generar el Resultado en la GDB default de ArcGIS y posteriormente exportar dicho resultado a la estructura de carpetas del proyecto.

Como resultado de la Distancia Euclidiana se tiene una matriz (Raster) de distancias (*CAcc2018v1.tif*); Sin embargo, es necesario recortar la imagen al área de estudio regional. Este paso se hace mediante la herramienta Extract by Mask que se encuentra en **Spatial Analyst Tools – Extraction – Extract by mask.**

Extract by Mask		_)	×
Input raster					,
CAcc2018v1.tif			•	2	
Input raster or feature mask data					
DLIM2014			-	2	
Output raster					
F: FREELANCE PATRIMONIO_NATU	JRAL\GEF5_Corredores\6 SIG\6 Geodata\Ra	ster\SupContVariablesM	R\CA	2	

Teniendo el resultado del proceso anterior, se procede a reclasificar la matriz de distancias. Inicialmente se procede a clasificar en 3 rangos de acuerdo a los Intervalos Geométricos de la información. Es importante tener en cuenta que para esta Variable se debe tener en cuenta que las distancias más lejanas son las de menor resistencia y las más cercanas son las de mayor resistencia.

· · · · · · · · · · · · · · · ·			_
Layer Properties		Classification	×
General Source Key Me	etadata Extent Display Symbology Tin	Classification	Classification Statistics
Show: Vector Field Unique Values Classified Stretched Discrete Color	Praw raster grouping values into cla Fields Value <value> Classification Geometrical Interval</value>	Method: Geometrical Interval Classes: 3 Data Exclusion Exclusion Exclusion Sampling Columns: 100	Count: 538453680 Minimum: 0 Maximum: 278 553, 1563 Sum: 29 787 155 910 000 Mean: 55 319,81119 Standard Deviation: 60 951, 73448
	Color Ramp Symbol Range 0 - 12 111,13363 12 111,13363 - 63 183,36065 63 183,36065 - 278 553,1563	1.0e+08- 1.0e+08- 1.0e+07- 6.0e+07- 4.0e+07- 1.0e+07- 1.0e+08- 1.0e+07- 1.0e+08- 1.0e+07- 1.0e+08- 1.0e+07- 1.0e+08- 1.0e+07-00-00-00-00-00-00-00-00-00-00-00-00-0	Break Values % 12 111, 13363 63 183,36065 278 553, 1563
About symbology	Show dass breaks using cell values	4.0e+07- 2.0e+07- 0.0e+00 0 69 638,28906 139 276,5781 208 914,6	3672 278 553,156 OK
		Snap breaks to data values	Cancel

A cada clase generada se procede a reasignar los valores de 1, 3 y 5, en donde 5 corresponde a las distancias cercanas a las vías o accesos terrestres, 3 corresponde a distancias intermedias y 1 a zonas lejanas de las vías o accesos terrestres, este proceso se hace mediante la herramienta Reclassify que se encuentra en **Spatial Analyst Tools – Reclass – Reclassify**.

The Reclassify	_		×
Input raster CAcc2018v1.tif Redass field VALUE		- 2	
Reclassification			
Old values New values Classify 0-12111,133626 5 5 12111,133626-63183,360 3 0 63183,360653-278553,15 1 0 NoData NoData Add Entry			
Load Save Reverse New Values Precision			
Output raster F:\FREELANCE\PATRIMONIO_NATURAL\GEF5_Corredores\6 SIG\6 Geodata\Raster Change missing values to NoData (optional)	CRat2018v1.tif		, ,
OK Cancel En	vironments	Show Help	>>

El resultado de este proceso se denomina variable de Resistencia de Accesos Terrestres nombrada CRat. Ver imagen a continuación:

2.3.1.2 Variable de Centros Poblados - DP (CRcp)

Los insumos necesarios para el procesamiento son:

- 1. Centros Poblados MGN_URB_AREA_CENSAL (MGN DANE)
- 2. Límite Área de estudio Regional SINCHI (DLim)

Con la información anterior se procede a desarrollar el procedimiento descrito en el flujograma a continuación:

La capa de Centros Poblados se obtiene del Marco Geoestadístico Nacional del Departamento Administrativo Nacional de Estadística – DANE descargada de la página web <u>https://geoportal.dane.gov.co/descargamgn.html</u>. Al ser una base de datos geográfica a nivel nacional es necesario cortar los centros poblados que se encuentran dentro del área de estudio por lo que se procede a hacer una selección de los polígonos que representan centros poblados dentro del área de estudio regional (Límite SINCHI) usando la herramienta Clip que se encuentra en **Analysis Tools – Extract – Clip**. La capa del MGN tomada como insumo es MGN_URB_AREA_CENSAL.shp de la carpeta COLOMBIA.

≪ Clip —			×
Input Features			~
MGN_URB_AREA_CENSAL	-	1	
Clip Features		_	
DLIM2014	•	6	
Output Feature Class			
D:\FREELANCE\PATRIMONIO NATURAL\PROCESOS\SHP\Centros_Pob_SINCHI.shp		6	
XY Tolerance (optional)			
Decimal degree	es	\sim	
			ľ
OK Cancel Environments	Show H	ielp >:	>

Teniendo los centros poblados dentro del área de estudio regional únicamente se procede a general la matriz de distancia mediante el uso de la herramienta Euclidian Distance que se encuentra en la Caja de herramientas **Spatial Analyst Tools – Distance – Euclidean Distance**. Las variables cargadas en esta herramienta son básicamente la nueva capa de Centros Poblados de la Zona de estudio regional (Centros_Pob_SINCHI) y los parámetros de cálculo son: tamaño de celda 30 metros; Extent del proceso es el límite SINCHI (Environments) y ruta de archivo de salida.

🔨 Euclidean Distance — 🗆 🗙	🛠 Environment Settings X
Input raster or feature source data CentroPob_SINCH OUtput distance raster F:FREELANCE/PATRIMONIO_INTURAL/GEFS_Corredores/6 SIG/6 Geodata/Raster/SupContVaniablesMR/LC	Workspace Vorkspace Output Coordinates Processing Extent Extent Same as layer (N142014
Dotput cell size (optional) [0] Output direction raster (optional)	Top Image: Control of the
~	Sine Raster
OK Cancel Environments Show Help >>	OK Cancel Show Help >>

NOTA: Es importante tener en cuenta que esta herramienta requiere de la estabilidad del equipo y la memoria RAM por lo que se recomienda inicialmente generar el Resultado en la GDB default de ArcGIS y posteriormente exportar dicho resultado a la estructura de carpetas del proyecto.

Como resultado de la Distancia Euclidiana se tiene una matriz (Raster) de distancias (*CDcp2018v1.tif*); Sin embargo, es necesario recortar la imagen al área de estudio regional. Este paso se hace mediante la herramienta Extract by Mask que se encuentra en **Spatial Analyst Tools – Extraction – Extract by mask.**

Versión: 1.0	
X	Instituto amazonico de SINCHI
Input raster CDcp2018/1.tif Input raster or feature mask data DUMX014 Output raster F:\FREELANCE\PATRIMONIO_NATURAL\GEF5_Corredores\6 SIG\6 Geodata\Raster\SupContVariablesMR\CC	

Teniendo el resultado del proceso anterior, se procede a reclasificar la matriz de distancias. Inicialmente se procede a clasificar en 3 rangos de acuerdo a los Intervalos Geométricos de la información. Es importante tener en cuenta que para esta Variable se debe tener en cuenta que las distancias más lejanas son las de menor resistencia y las más cercanas son las de mayor resistencia.

A cada clase generada se procede a reasignar los valores de 1, 3 y 5, en donde 1 corresponde a las distancias cercanas a los centros poblados, 3 corresponde a distancias intermedias y 5 a zonas lejanas de los centros poblados, este proceso se hace mediante la herramienta Reclassify que se encuentra en **Spatial Analyst Tools – Reclass – Reclassify**.

FORMATO: PROTOCOLO Versión: 1.0	Nilley		
Versión: 1.0	El ambiente esta statista		
	Instituto amazonico do SINCHI		Versión: 1.0
		Reclassify – – × Input raster CDcp2018v1.tif Reclass field VALUE Reclassification Old values 0 - 12111,133626 5 Unique 0 - 12111,133626 - 1313,360 - 3 0 - 12111,133626 - 1313,360 - 1313,360 - 1314,360	

El resultado de este proceso se denomina variable de Resistencia de Centros Poblados nombrada CRcp. Ver imagen a continuación:

OK Cancel Environments... Show Help >>

2.3.1.3 Variable de Explotación de Recursos No Renovables - DNR (CMnr)

Los insumos necesarios para el procesamiento son:

- 1. Localización de Pozos EPIS (Fuente EPIS ANH)
- 2. Títulos Mineros (TITULOS SINCHI)
- 3. Límite Área de estudio Regional SINCHI (DLim)

Con la información anterior se procede a desarrollar el procedimiento descrito en el flujograma a continuación:

La capa de Pozos de Hidrocarburos se obtiene desde la página de la ANH-EPIS <u>http://www.anh.gov.co/Banco%20de%20informacion%20petrolera/EPIS/Datos/Forms/DispForm.aspx</u> <u>?ID=33</u> en donde se descarga la información referente a los pozos de hidrocarburos en diferentes estados de desarrollo, adicional a esto se solicita al SINCHI la capa de Títulos Mineros presentes en el área de estudio regional. Al tener por una parte una capa con geometría puntos (Pozos) y otra poligonal (Títulos) se requiere unificar la geometría para poder unir las capas y trabajarlas como "Recursos No Renovables".

Inicialmente se hace un Buffer a la capa de Pozos denominados "En Explotación" teniendo como radio de influencia 225 Metros, este proceso se hace con la herramienta ubicada en la ruta **Analysis Tools** – **Proximity – Buffer**.

N Buffer	-		\sim	
Input Features		_		~
Pozo Hidrocarburo		•	6	
Output Feature Class				
D: \FREELANCE \PATRIMONIO NATURAL \PROCESOS \SHP \PozosHidrocarburos_Poly.shp			2	
Distance [value or field]				
225 Meters			\sim	
◯ Field				
			\sim	
Side Type (optional)				
FULL			\sim	
End Type (optional)				
ROUND Marked (anti-anti-			~	
PI ANAR			~	
Dissolve Type (optional)				
NONE			\sim	
Dissolve Field(s) (optional)				v
			^	
OK Cancel Environments	. Sł	now He	lp >>]

		Código: FP-CCOB-4
Instituto amazonico de SINCHI	TORWATO, FROTOCOLO	Versión: 1.0

Con el resultado obtenido en el paso anterior, se procede a Unir la capa de Pozos en Explotación junto con la de títulos mineros mediante el uso de la herramienta Unión que se encuentra en la ruta **Analysis Tools – Overlay – Union**.

√ Union	-			×
Input Features			<u></u>	^
		<u> </u>		
Features	Ranks		+	
PozosHidrocarburos_Poly				
TitulosMineros			×	
		_	t	
		-	_	
			Ŧ	
<		>		
Output Feature Class				
D:\FREELANCE\PATRIMONIO NATURAL\PROCESOS\SHP\RecNoRen.shp			6	
JoinAttributes (optional)				
ALL			\sim	
XY Tolerance (optional)				
Meter	s		~	
Gaps Allowed (optional)				~
OK Cancel Environment	s !	Show H	ielp >:	>

Haciendo la unión de las dos capas (Pozos de Hidrocarburos en Explotación y Títulos Mineros) se crea la capa de Recursos No Renovables que será el insumo para la generación de la matriz de distancias.

Teniendo la capa de Recursos No Renovables dentro del área de estudio regional, se procede a general la matriz de distancia mediante el uso de la herramienta Euclidian Distance que se encuentra en la Caja de herramientas **Spatial Analyst Tools – Distance – Euclidean Distance**. Las variables cargadas en esta herramienta son básicamente la nueva capa de Recursos No Renovables de la Zona de estudio regional (RecNoRen_SINCHI) y los parámetros de cálculo son: tamaño de celda 30 metros; Extent del proceso es el límite SINCHI (Environments) y ruta de archivo de salida.

🔨 Euclidean Distance — 🗆 🗙	🛠 Environment Settings	×
Input raster or feature source data RecNoRen Culput distance raster Culput distance raster Fr:VREELANCE (PATRIMONIO) UATURAL (SEF5_Corredores)6 SIG (6 Geodata (Raster (SupContVariables/RR)(C))	V Workspace Voltage Voltage	Î
Cutput cell size (optional) [50 Output direction raster (optional)	Top Top 4,948186 Right -77,670617 66,847215 -8000 -4,225780	9
OK Cancel Environments) Show Help >>	XY Resolution and Tolerance XY Resolution and Tolerance X Values Z Values Crendatabase CK Cancel Show Hep >	>

NOTA: Es importante tener en cuenta que esta herramienta requiere de la estabilidad del equipo y la memoria RAM por lo que se recomienda inicialmente generar el Resultado en la GDB default de ArcGIS y posteriormente exportar dicho resultado a la estructura de carpetas del proyecto.

Instituto	Ø	El ambiente es de todos	
SINCHI			

Como resultado de la Distancia Euclidiana se tiene una matriz (Raster) de distancias (*CDnr2018v1.tif*); Sin embargo, es necesario recortar la imagen al área de estudio regional. Este paso se hace mediante la herramienta Extract by Mask que se encuentra en **Spatial Analyst Tools – Extraction – Extract by mask.**

Input raster						
CDnr2018v1.tif					-	2
Input raster or feature mask data						_
DLim2014					-	6
Output raster						_
F:\FREELANCE\PATRIMONIO_NATI	JRAL\GEF5_Corredores	\6 SIG\6 Geodata\	Raster\SupContV	ariablesM	ir \Ce	6

Teniendo el resultado del proceso anterior, se procede a reclasificar la matriz de distancias. Inicialmente se procede a clasificar en 3 rangos de acuerdo a los Intervalos Geométricos de la información. Para esta Variable se debe tener en cuenta que las distancias más lejanas son las de menor resistencia y las más cercanas son las de mayor resistencia.

A cada clase generada se procede a reasignar los valores de 1, 3 y 5, en donde 1 corresponde a las distancias cercanas a los centros poblados, 3 corresponde a distancias intermedias y 5 a zonas lejanas de las áreas de explotación de recursos no renovables, este proceso se hace mediante la herramienta Reclassify que se encuentra en **Spatial Analyst Tools – Reclass – Reclassify**.

	-	
Flambiente au au a		Código: FP-CCOB-4
Institute amazonico de SINCHI	TORMATO, TROTOGOLO	Versión: 1.0
	Reclassify - > Input raster CDnr2018/1.tif Image: CDnr2018/1.tif	
	Change missing values to NoData (optional)	✓

El resultado de este proceso se denomina variable de Resistencia de Recursos No Renovables nombrada CMnr. Ver imagen a continuación:

OK Cancel Environments... Show Help >>

2.3.1.4 Variable Vocación de los Suelos - VS (CVco)

Los insumos necesarios para el procesamiento son:

1. Capa de Vocación del Suelo del IGAC (ag_100k_vocacion_uso_2017_magna_AMZtt)

Con la información anterior se procede a desarrollar el procedimiento descrito en el flujograma a continuación:

Inicialmente se debe agregar un campo el cual se llama código, allí se le asigna un número a cada categoría de vocación del uso del suelo.

Tabla 4. Clasificación de los valores de acuerdo a la vocación de uso de los suelos

Vocación	Código
Agrícola	1
Agroforestal	2
Conservación de Suelos	3
Cuerpo de agua	4
Forestal	5
Ganadera	6
Zonas urbanas	7

Posterior a la adición del nuevo campos (código) en los atributos de la capa de vocación del suelo, se procede a transformar la capa Vectorial en Raster mediante el atributo "Categoría". Para hacer este proceso se debe utilizar la herramienta "**Polygon to Raster**" que se encuentra en el **Toolbox – Conversion Tools – To Raster – Polygon to Raster**, ingresando como parámetro de creación el atributo "Categoría" y con tamaño de celda de 30 metros.

Como resultado de este proceso se genera una capa Raster de Categoría de vocación de Uso del Suelo con los valores de 1 a 7 que se denominará "Vocación de los Suelos" **CVco_vocacion**.

2.3.1. 5 Variable de Pendiente - P (CRpe)

Los insumos necesarios para el procesamiento son:

- 3. DEM Colombia 30 metros
- 4. Límite Área de estudio Regional SINCHI (DLim)

Con la información anterior se procede a desarrollar el procedimiento descrito en el flujograma a continuación:

Inicialmente es necesario recortar el DEM con resolución de 30 metros al área de estudio regional. Este paso se hace mediante la herramienta Extract by Mask que se encuentra en **Spatial Analyst Tools – Extraction – Extract by mask.**

∑ Extract by Mask	_		×	
Input raster				~
dem_colombia_magna_30m.img		-	2	
Input raster or feature mask data				
DLIM2014		•	2	
Output raster				
F:\FREELANCE\PATRIMONIO_NATURAL\GEF5_Corredores\6 SIG\6 Geodata\Raster\CDtm2	2018v1.tif		6	
				ļ
OK Cancel Environmen	nts	Show H	ieln >>	
OK Carcel Environmen				

Teniendo el resultado del proceso anterior (CDtm2018), se procede a generar la superficie de Pendientes mediante la herramienta Slope que se encuentra **3D Analyst Tools – Raster Surface – Slope**, teniendo en cuenta el parámetro Percentage Rise.

Input raster								\sim
CDtm2018v1.tif						-	6	
Output raster								
F: FREELANCE PATRIMONIO_N	ATURAL GEF5	_Corredores	5 SIG\6 Geoda	ta\Raster\SupCo	ontVariable	sMR\(r i i i i i i i i i i i i i i i i i i i	
Output measurement (ontional)						_		
DEGREE							~	
Method (optional)								
PLANAR							~	
Z factor (optional)								
							1	
Z unit (optional)								
METER							\sim	
								\sim
	[OK	Cancel	Environme	ata 🛛	Chan Li		
	L	UK	Cancel	Environme	nts	Show H	eip >:	•

La superficie generada se encuentra entre los valores de 0 a 90 por lo que se deben reclasificar mediante la herramienta Reclassify ubicada en la ruta **Spatial Analyst Tools – Reclass – Reclassify**. se procede a clasificar en 3 rangos de acuerdo a los Intervalos Geométricos de la información

A cada clase generada se procede a reasignar los valores de 1, 3 y 5, en donde 1 corresponde a las pendientes menos pronunciadas, 3 corresponde a pendientes intermedias y 5 a pendientes fuertes, este proceso se hace mediante la herramienta Reclassify que se encuentra en **Spatial Analyst Tools** – **Reclass – Reclassify**.

		Código: FP-CCOB-4
Institute amazonico de SINCHI	FURIMATU. PRUTUCULU	Versión: 1.0
	Reclassify - X Input raster CPen2018/1.hf Image: CPen2018/1.hf CPen2018/1.hf Image: CPen2018/1.hf Image: CPen2018/1.hf Reclassification Image: CPen2018/1.hf Image: CPen2018/1.hf Reclassification Image: CPen2018/1.hf Image: CPen2018/1.hf Image: CPEn2018/1.hf Image: CPEn2018/1.hf Image: CPEn2018/1.hf Image: CPEn2018/1.hf Image: CPEn2018/1.hf Image: CPEn2018/1.hf Image: CPEn2018/1.hf Image: CPEn2018/1.hf Image: CPEn2018/1.hf Output raster Image: CPEn2018/1.hf Image: CPEn2018/1.hf Change missing values to NoData (optional) Image: CPEn2018/1.hf Image: CPEn2018/1.hf	

El resultado de este proceso se denomina variable de Resistencia a la Pendiente nombrada CRpe.

OK Cancel Environments... Show Help >>

2.3.1.6 Variable coberturas de la tierra

Los insumos necesarios para el procesamiento son:

- Capa de Coberturas de la tierra año 2016 (CCob2016v1)
 Límite Área de estudio Regional SINCHI (DLim)

Con la información anterior se procede a desarrollar el procedimiento descrito en el flujograma a continuación:

Inicialmente se debe agregar un campo el cual se llama código, allí se le asigna un número a cada categoría de cobertura de la tierra.

tura	Código	Cobertura	Código

Tabla 4. Clasificación de los valores de acuerdo a las coberturas de la tierra

Cobertura	Código	Cobertura	Código
Aeropuertos	1	Zonas industriales o comerciales	23
Arroz	2	Zonas quemadas	24
Bosque fragmentado con pastos y cultivos	3	Afloramientos rocosos	25
Bosque fragmentado con vegetacion secundaria	4	Arbustal abierto mesofilo	26
Estanques para acuicultura continental	5	Arbustal denso	27
Explotacion de hidrocarburos	6	6 Bosque de galeria y ripario	
Mosaico de cultivos	7	Bosque denso alto de tierra firme	29
Mosaico de cultivos con espacios naturales	8	Bosque denso alto inundable heterogeneo	30
Mosaico de cultivos, pastos y espacios naturales	9	Bosque denso bajo de tierra firme	31
Mosaico de pastos con espacios naturales	10	Bosque denso bajo inundable	32
Mosaico de pastos y cultivos	11	Herbazal abierto arenoso	33
Palma de aceite	12	Herbazal abierto rocoso	34
Palmar	13	Herbazal denso de tierra firme arbolado	35
Pastos arbolados	14	Herbazal denso de tierra firme con arbustos	36
Pastos enmalezados	15	Herbazal denso de tierra firme no arbolado	37
Pastos limpios	16	Herbazal denso inundable arbolado	38
Plantacion forestal	17	Herbazal denso inundable no arbolado	39
Tejido urbano continuo	18	Lagunas, lagos y cienagas naturales	40
Tejido urbano discontinuo	19	Rios	41
Tierras desnudas y degradadas	20	Zonas arenosas naturales	42
Vegetación secundaria o en transicion	21	Zonas pantanosas	43
Zona de extraccion minera	22		

Posterior a la adición del nuevo campos (código) en los atributos de la capa de coberturas de la tierra, se procede a transformar la capa Vectorial en Raster mediante el atributo "Nombre". Para hacer este proceso se debe utilizar la herramienta "**Polygon to Raster**" que se encuentra en el **Toolbox – Conversion Tools – To Raster – Polygon to Raster**, ingresando como parámetro de creación el atributo "Nombre" y con tamaño de celda de 30 metros.

Como resultado de este proceso se genera una capa Raster de Categoría de vocación de Uso del Suelo con los valores de 1 a 43 que se denominará "Coberturas de la tierra" **CCob2016v1_no**.

NOTA: Todas las capas obtenidas para la asociación de variables versus unidades de fragmentación fueron Resampleadas pasándolas de una resolución espacial de 30 metros a 500 metros. Para el proceso de resampleo se utiliza la herramienta **Data Management Tools – Raster – Raster Processing – Resample**.

El ambiente es de todos

Instituto

SINCH

2.3.2. Asociación de variables y explicativas y unidades de fragmentación

Dado que la capa de unidades de análisis resulto con muchos polígonos con áreas muy pequeñas, y que dificultaban los posteriores análisis, fue necesario hacer una generalización de dicha capa por área. De tal manera que todos los polígonos menores a 25 ha fueron eliminados y pegados a los polígonos adyacentes de mayor área. Este proceso se genera haciendo uso de la herramienta de ArcGIS llamada **Generalization- Eliminate;** para esto es importante que antes de utilizar la herramienta se seleccionen todos los polígonos menores a 25 ha.

5	Eliminate		×
Input Layer CUan2018v1 Output Feature Class C:\Users\WICOLAT\Documents\WrGGIS\Default1.gdb\CUan2018v1_Eliminate		Eliminate Unininates polygons by merging them with neighboring olygons that have the largest area or the longest shared order. Eliminate is often used to remove small silver olygons that are the result of overlay operations, such is intersect or Union.	~
OK Cancel Environments	< Hide Help	Tool Help	~

Las unidades de análisis previamente elaboradas (Fisiografía-Grado fragmentación -Patrón) son convertidas a un shape de puntos para poder ser utilizados en el software Maxent. Este proceso se genera haciendo uso de la herramienta de ArcGIS llamada **Covert- Feature to Point**.
El ambiente			Código: FP-CCOB-4
Instituto amaginació de SINCHI	TORMATO, FROTO		Versión: 1.0
~	Feature To Point		- • ×
Input Features 3: \SINCHI1\RESULTADOS\	FINAL \FRAG \CUan 20 18v 1.shp	Output Feature Class	^
Output Feature Class C:\Users\VICOLAI\Docum	ents\ArcGIS\Default1.gdb\CUan2018v1_point	The output point feature class.	
Inside (optional)			
	~		\sim

NOTA: Para convertir la capa de unidades de fragmentación en un shape de puntos, se debe previamente generar un campo en donde se concatene la fisiografía, el grado de fragmentación y el patrón de fragmentación. Dicho campo será el atributo por el cual se genera el shape de puntos.

Al shape de puntos de las unidades de fragmentación, se le debe generar otras dos columnas de atributos que hagan relación a las coordenadas de latitud y longitud. Este proceso se genera haciendo uso de la herramienta de ArcGIS llamada **Add XY coordinates.** La tabla final del shape de puntos debe contener tres campos de atributos, a saber; unidad, point_x y point_y. Esta capa fue nombrada "CUan2018v1_point"

5	Add XY Coordinates	- • ×
Input Features CUan2018v1_point		Add XY Coordinates Adds the fields POINT_X and POINT_Y to the point input features and calculates their values. It also appends the POINT_Z and POINT_M fields if the input features are Z- and M-enabled.
		INPUT • • • • • • • • • • • • •
	~	OUTPUT (3,6) (5,2)
ОК	Cancel Environments << Hide Help	Tool Help

AND A			
Instituto	Ø	El ambiente es de todos	
SINCHI			

La tabla de atributos del shape de puntos de unidades de fragmentación, debe ser convertida a una tabla tipo .cvs, púes este es el formato que reconoce Maxent de las variables dependientes, para la construcción del modelo de probabilidades.

Una vez convertidas las unidades de análisis en una tabla tipo .cvs y con las variables explicativas en formato raster, se dispone a utilizar dicha información en el software Maxent para generar los análisis de asociaciones entre variables. En este sentido, se tiene dos grupos de variables; las independientes (coberturas, vías, centros poblados, recursos no renovables, vocación y pendiente) y las dependientes (puntos de unidades de análisis de fragmentación). La asociación de variables se hace con el software **Maxent**, diferenciando aquellas variables categóricas de las continuas.

Maximum I	Entropy Species D	istribu	tion Modeling	g, Version 3.4	4.1		×
Samples				Environme	ntal layers		
File CapasMaxent\500\WGS\CUan2018v1	_point.csv Brows	е	Directory/File 11	CapasMaxent	500\WGS\ASC1	Brows	е
Altillanura-Alta-Geometrico		-			Catalania		
Altillanura-Baja-Isla			Coper		Categorical		
Altiplanicie-Alta-Geometrico					Continuous		
Altiplanicie-Baja-Isla		=	V noreno		Conunuous		
Aluvial-Alta-Geometrico_parche			v poblado		Continuous		
Aluvial-Baja-Isla			Poblado		continuous		
Lomerio-Alta-Geometrico		H	v slope		Continuous		
Lomerio-Baja-Isla			I slope		Continuous		
Lomerio-Media-Parche			✓ vias		Continuous		-
Macizo-Alta-Geometrico			VIU3		continuous		
Macizo-Baja-Difuso		-	✓ vocacion		Categorical		-
Select all	Deselect all		- rocación		outogonoui		
Linear features					Create respor	ise curves	2
				Ма	ke pictures of p	redictions	2
			Do jao	ckknife to mea	sure variable in	nportance	~
Product features				0	utput format	umulative	-
Threshold features				Ou	tput file type a	sc	-
✓ Hinge features	Output directory	J:\SINC	HI1\CapasMaxen	nt\500\WGS\res	ultados1	Brows	e
✓ Auto features	Projection layers	directo	ry/file			Brows	e
Run		Settings			Help		

NOTA: Para poder correr el modelo en maxent se debe tener todas las variables explicativas en formato ascii, incluidas en una misma carpeta y todas con las mismas características de fuente. Es decir, mismo sistema, de coordenadas (wgs 84), mismo extent y mismo número de columnas y de filas. Adicionalmente para que el Maxent arroje mayor información útil para los posteriores análisis, se debe habilitar las opciones de crear curvas de respuesta y crear medidas de importancia según prueba de navaja.

Los resultados que arroja maxent permiten identificar cuáles son las variables que tienen una mayor y menor contribución a la ocurrencia de cada unidad de fragmentación, y además genera unas gráficas de respuesta por cada variable explicativa utilizada.

Unidad de análisis	Variable	Porcentaje de contribución	Importancia en la permutación
	Coberturas	51.1	26.4
	Vías	41.4	67.8
Altillanura-Alta-	Recursos no renovables	5.8	3.5
Geométrico	Cetros poblados	0.8	2
	Vocación	0.8	0.2
	Pendiente	0.1	0.1

3. MOTORES DE FRAGMENTACIÓN

3.1. Identificación y espacialización de motores de fragmentación

Para la identificación y espacialización de motores de fragmentación, se utilizó la información la capa de coberturas de la tierra, como aquella variable a través de la cual se relacionan las principales actividades que desarrolla el motor. Una vez identificado cada motor a través de las coberturas, se seleccionan una serie de variables independientes que explican la ocurrencia del motor. Este ejercicio se realiza con el software maxent, el cual además de generar gráficas y tablas que explican la contribución de cada variable a la ocurrencia del motor, también genera mapas de probabilidades que ubican espacialmente las mayores y menores probabilidades de la aparición de cada uno de estos.

Los insumos necesarios para el análisis son:

- 1. Capa de Coberturas de la tierra año 2016 (CCob2016v1)
- 2. Capa de Vías (Transporte Terrestre IGAC 100K)
- 3. Centros Poblados MGN_URB_AREA_CENSAL (MGN DANE)
- 4. Títulos Mineros (TITULOS SINCHI)
- 5. Capa de Vocación del Suelo del IGAC (ag_100k_vocacion_uso_2017_magna_AMZtt)
- 6. DEM Colombia 30 metros
- 7. Unidades de análisis (Fisiografía-grado de fragmentación-Patrón)
- 8. Información alfanumérica de factores socio-económicos
- 9. Capa de municipios
- 10. Límite Área de estudio Regional SINCHI (DLim)

Con la información anterior se procede a desarrollar el procedimiento descrito en el flujograma a continuación:

3.1.1 Identificación de variables

Las capas utilizadas en el proceso de identificación y asociación entre unidades de análisis y variables explicativas, fueron un insumo necesario que también se utilizaron para correr el ejercicio de identificación y espacialización de motores de fragmentación En este sentido se utilizaron las variables distancia a vías (CRat_500), distancia a centros poblados (CRcp_500), distancia a recursos no renovables (CMnr_500), vocación (CVco_vocacion_500), y pendiente (CRpe_500).

El resto de variables explicativas que se asocian a factores socio-económicos, se espacializaron tomando como unidad de análisis la división municipal. A dicha capa se le incluyeron once campos de atributos nuevos que corresponden a cada variable socio-económica. Para este proceso se utilizó la herramienta de ArcGIS llamada **export table**, que se encuentra dentro de las opciones de la tabla de atributos del shape. También se utilizó **Microsoft excel** para la asignación de nuevas columnas o campos de atributos.

El ambiente Minamb

Instituto

SINCH

8	Find and Repla	ce							
	Select By Attrib	utes		NOMBRE_ENT	CATEGORIA	DEPARTAMEN	COD_DEPART	COD_MUNICI	AREA_KM
8	Clear Selection			i .	M	NARIÑO	52	560	376.602234
ъ.	Switch Coloctio			D CAICEDO	M	PUTUMAYO	86	569	926.232805
1	Switch Selectio	0		BA	M	NARIÑO	52	215	304.590581
5	Select All			ES	M	NARIÑO	52	573	350.147196
	Add Field				M	PUTUMAYO	86	320	1936.372994
_	Add Held			AUA(Cor. Departamental)	CD	VAUPÉS	97	777	5550.875022
	Turn All Fields	On		BA	M	CAUCA	19	397	517.106689
1	Show Field Alia	ises		IAR	M	GUAVIARE	95	015	13559.867443
_				GUSTÍN	M	HUILA	41	668	1387.972075
	Arrange Tables		•	NCIA	M	CAQUETÁ	18	001	2587.370436
	Restore Default	Column Width	s	PANA	CD	GUAINÍA	94	663	4923.966985
			-	PÁN	M	META	50	325	11946.462871
	Restore Default	Field Order		JAN DE ARAMA	M	META	50	683	1179.965638
	Joins and Relat	es	•	AS	M	META	50	330	2278.537609
				NCO MINA	CD	GUAINÍA	94	343	9467.804056
	Related Tables		•	IUAL	CD	GUAINÍA	94	886	2334.926889
la l	Create Graph				M	META	50	370	6437.424237
				TORIA (Pacoa)	CD	AMAZONAS	91	430	1432.794976
	Add Table to Li	ayout		GUEL (La Dorada)	M	PUTUMAYO	86	757	380.058191
2	Reload Cache			IRERA	CD	AMAZONAS	91	407	13688.025588
				NDER (Araracuara)	CD	AMAZONAS	91	669	14731.235475
	Print			PARANÁ (Campoamor)	CD	AMAZONAS	91	460	16866.119773
	Reports		•		M	NARIÑO	52	287	394.846156
-	E		_		M	CAQUETÁ	18	785	694.750576
	Export			D GUZMÁN	M	PUTUMAYO	86	571	4544.456947
	A			ARZÓN	M	PUTUMAYO	86	885	1399.591503
	20 Export			0	M	CAQUETÁ	18	756	42317.533891
	27 Exports the	table to a new f	table.	GO	M	PUTUMAYO	86	760	339.72871
	28			þ	M	CAQUETÁ	18	205	488.721552
	29 Polygon	4378	SAN I	FRANCISCO	M	PUTUMAYO	86	755	407.952404
	30 Polygon	4380	COLÓ	N	M	PUTUMAYO	86	219	64.514166
	31 Polygon	4388	EL PA	UJIL	M	CAQUETÁ	18	256	1251.20188
	32 Polygon	4391	EL DO	NCELLO	M	CAQUETÁ	18	247	1105.866296

Después de exportar la tabla de atributos de la capa de municipios, esta fue editada a través de **excel** para asignarle una columna nueva que correspondió a cada variable socio-.económica. Una vez este ejercicio realizado, se procedió a realizar una unión espacial entre dicha tabla y la capa de municipios. Para este proceso se utilizó la herramienta de ArcGIS llamada **join**, que se encuentra dentro de las opciones de la capa municipios, la cual a través de un campo en común une el archivo espacial y el alfanumérico, de tal manera que como resultado final se obtuvo una capa de municipios con sus respectivas características socio-económicas. Dicha capa se nombró "upas_variables"

		_								~				
	Сору			Tabl	e									
×	Remove			H •	- 193-	- 🖬 🖗	× 16 12 ¢							
	Open Attribute Table			mot	oros a	alanaci								
	Joins and Relates	•	Join		74	pianasz				DEDADTAMEN	000.050407			
	Zoom To Laver		Remove Join(e)		snape -	OBJECTID_1	NOMBRE_EN1	CATEGORIA	DEPARTAMEN	COD_DEPART	COD_MONICI	AREA_KM	- '
×.	Zener Te Mele Visible	- 11		Join				PUTOSI RUERTO CAICEDO	M	RUTUMAYO	88	569	926 232805	-
4	200m TO Make VISIDIE	- 11	Kelate	1.00		an about the		CÓRDOBA	M	NARINO	52	215	304 590581	-
	Visible Scale Range	•	Remove Relat	sta	ndalon	e table b	ased on a	PUERRES	M	NARINO	52	573	350.147196	-
	Use Symbol Levels			COL	mmon	attribute	snatial	OBITO	м	PUTUMAYO	86	320	1936.372994	
		_		loc	ation o	or existing	relationship	PAPUNAUA(Cor, Departamental)	CD	VAUPÉS	97	777	5550.875022	
	Selection	•		clas	ss.			LA VEGA	м	CAUCA	19	397	517,106689	
	Label Features			-			7607	CALAMAR	м	GUAVIARE	95	015	13559.867443	
		_		Π-	8 Pc	olygon	4235	SAN AGUSTÍN	M	HUILA	41	668	1387.972075	
	Edit Features	•			9 Pc	olygon	4236	FLORENCIA	M	CAQUETÁ	18	001	2587.370436	
	Convert Labels to Apportation				10 Pc	olygon	4243	MAPIRIPANA	CD	GUAINÍA	94	663	4923.966985	
	conter cabes to panotations.				11 Pc	olygon	4246	MAPIRIPÁN	M	META	50	325	11946.462871	
	Convert Features to Graphics				12 Pc	olygon	4248	SAN JUAN DE ARAMA	M	META	50	683	1179.965638	
	Convert Symbology to Representation				13 Pc	olygon	4252	MESETAS	M	META	50	330	2278.537609	
	Dute				14 Pc	olygon	4258	BARRANCO MINA	CD	GUAINÍA	94	343	9467.804056	
	Data	<u> </u>			15 Pc	olygon	4262	CACAHUAL	CD	GUAINÍA	94	886	2334.926889	En
	Save As Layer File			ш.	16 Pc	olygon	4264	URIBE	M	META	50	370	6437.424237	
5	Create Laver Package			Ц.	17 Pc	olygon	4340	LA VICTORIA (Pacoa)	CD	AMAZONAS	91	430	1432.794976	_
r	create Layer Package	_		Ц.	18 Pc	olygon	4341	SAN MIGUEL (La Dorada)	M	PUTUMAYO	86	757	380.058191	En
5	Properties			Ц.,	19 Pc	olygon	4355	LA PEDRERA	CD	AMAZONAS	91	407	13688.025588	En
-		_		Щ.,	20 Pc	olygon	4356	SANTANDER (Araracuara)	CD	AMAZONAS	91	669	14731.235475	-
				Ц.,	21 Pc	olygon	4357	MIRITI-PARANA (Campoamor)	CD	AMAZONAS	91	460	16866.119773	-
				н.	22 Pc	olygon	4363	FUNES	M	NARINO	52	287	394.846156	-
				н.	23 Pc	olygon	4364	SOLITA	м	CAQUETA	18	785	694.750576	-
				н.	24 Pc	olygon	4365	PUERTO GUZMAN	M	PUTUMAYO	86	571	4544.456947	-
				н.	25 Pc	olygon	4367	VILLAGARZON	M	PUTUMAYO	86	885	1399.591503	-
				н.	26 Pc	olygon	43/1	SOLANO	M	CAQUETA	18	756	42317.533891	-
				н.	27 Pc	olygon	4373	SANTIAGO	M	PUTUMAYO	86	760	339.72871	-
				н-	20 PC	nygon	43/6	CONILLO	M	CAQUETA	10	200	+00.721552	+-
				Η-	28 P0	aygun	43/8	COLÓN	M	PUTUMAYO	00	700	407.952404	+
				H-	30 PC	hygon	4380	EL DALLIN	M	CADUETÁ	10	210	104.014100	+
				Η-	22 D	higon	4300	EL DONCELLO		CAQUETÁ	10	2.30	1201.20100	+
				н.	32 PC	- siygon	4391	EL DONCELLO	M	CAQUETA	10	247	1105.000290	+
				<										>
				н	4	1	н н 📒 🗖	(0 out of 84 Selected)						
			1											

NOTA: Las características socio-económicas que se le asignó a cada municipio fueron tomadas de la caracterización de Unidades de Producción Agropecuaria.

La capa de upas_variables fue convertida a raster once veces, las cuales hacen relación a cada característica socio-económica. Para hacer este proceso se debe utilizar la herramienta "**Polygon to Raster**" que se encuentra en el **Toolbox – Conversion Tools – To Raster – Polygon to Raster**, ingresando como parámetro de creación el atributo "característica socio-económica 1, característica socio-económica 2, característica socio-económica 3, etc..." y con tamaño de celda de 500 metros.

5	Polygon to Raster		
Input Features Upas_variables Value field Dis_UFNA Output Raster Dataset C:Users\NLCOLATDocuments\VrcGIS\Default1.gdb\dist_upas Cell asgimment type (optional) CELL_CENTER Priority field (optional) NONE Celisze (optional) S00		Output Raster Dataset The output raster dataset to be created. When not saving to a geodatabase, specify .tif for a TIFF file format, .img for an ERDAS IMAGINE file format, or no extension for an Esri Grid raster format.	
OK Cancel Environ	ments	Tool Help	~

Instituto amazonico de

SINCHI

El ambiente Minam

NOTA: Todas las capas raster socio-económicas generadas a partir de la capa de municipios deben contener las mismas características de fuente. Es decir, mismo sistema, de coordenadas (wgs 84), mismo extent y mismo número de columnas y de filas. Para garantizar esto, se debe hacer este proceso mediante la opción **environment settings**, enrutando el archivo del cual se obtengan todas las características cartográficas.

		_
¥ Workspace	Environment Settings	
Output Coordinates	Environment extringe energified in this dialog bay are	
Processing Extent	values that will be applied to appropriate results from	1
XY Resolution and Tolerance	running tools. They can be set hierarchically, mean	ng
۶ M Values	in, so they apply to all tools; for a model, so they apply to all tools.	ply
Z Values	to all processes within the model; or for a particular	
¥ Geodatabase	within a model will override all other settings.	633
✓ Geodatabase Advanced	Environments set for all processes in a model will	
¥ Fields	overnde those set in the application.	
× Random Numbers	Geoprocessing environment settings are additional	
× Cartography	normal tool parameters in that they don't appear on	m a
¥ Coverage	tool's dialog box (with certain exceptions). Rather, t	iey
¥ Raster Analysis	are interrogated and used by tools when they are ru	and n.
¥ Raster Storage		
¥ Geostatistical Analysis	to performing geoprocessing tasks. For example, vo	jisite ju
¥ Parallel Processing	may already be familiar with the Current and Scratc	1
¥ Terrain Dataset	workspace environment settings, which allow you to workspaces for inputs and outputs. Another example	set e is
¥ TIN	the Extent environment setting, which allows your	
	the Output Coordinate System environment setting.	or
	which defines the coordinate system (map projectio	n) for
	v new data.	
OK Can	el << Hide Help Tool Help	

Instituto amazonico de

SINCHI

El ambiente es de todos

Para la identificación de motores de fragmentación se utilizó la capa de coberturas de la tierra, a la cual se le agregó un campo de atributo con el nombre del motor, y se editó de tal manera que se le asignó el nombre del motor a la cobertura correspondiente. Este proceso se genera haciendo uso de la herramienta de ArcGIS llamada **add field**, que se encuentra dentro de las opciones de la tabla de atributos del shape.

MOTOR	COBERTURA DE LA TIERRA
Concentración de la tierra 1	Pastos limpios, pastos enmalezados, pastos arbolados, palma, arroz, tierras desnudas y degradadas, todos los
	mosaicos, zonas industriales y comerciales
Expansión de la frontera	Bosque fragmentado con pastos y cultivos, bosque
agrícola2	fragmentado con vegetación secundaria, mosaicos (todos), zonas quemadas
Exploración y explotación de	Zonas de explotación minera, explotación de
recursos minero energéticos 3	hidrobarburos
Expansión de la ganadería 4	Pastos limpios, pastos enmalezados, pastos arbolados, tierras desnudas y degradadas, los mosaicos con pastos, zonas quemadas
Apertura, construcción,	Aeropuertos
ampliación y mejoramiento	Tejidos urbanos continuos y discontinuos
de la red vial terrestre 5	
Incidencia y expansión de cultivos de uso ilícito 6	Mosaicos y la capa de cultivos de uso ilícito

Tabl	e				Π×
:= -	🖥 • 🖳 🗞 🛛 🐗 🗙				
A	Find and Replace				×
-	Select By Attributes	COBERTURA	AREA ha	Tipo	^
IVI	Clear Selection	s, pastos y espacios naturales	274,988421	Transformado	
	Clear Selection		12473.709894	Transformado	
	Switch Selection	y cultivos	1779.794775	Transformado	
R	Select All	ienagas naturales	4207.731612	Natural	
		y cultivos	1779.794775	Transformado	
	Add Field	lenagas naturales	4207.731612	Natural	
	Turn All Fie	ps	1779.794775	Transformado	
	Show Field	naturales	4207.731612	Natural	
	Adds a new field to the	e table. os	1779.794775	Transformado	
	Arrange Ta	naturales	4207.731612	Natural	
	Restore Default Column Widths	y cultivos	1779.794775	Transformado	
	Restore Deladit Column widths	ienagas naturales	4207.731612	Natural	
	Restore Default Field Order	y cultivos	1779.794775	Transformado	
	Joins and Relates	ienagas naturales	4207.731612	Natural	
		y cultivos	1779.794775	Transformado	
	Related Tables	ienagas naturales	4207.731612	Natural	
dh	Create Graph	y cultivos	1779.794775	Transformado	
	A 117 11 A 1	tienagas naturales	4207.731612	Natural	
	Add Table to Layout	y cultivos	1779.794775	Transformado	
3	Reload Cache	ienagas naturales	4207.731612	Natural	
Ā		y cultivos	1779.794775	Transformado	
	Print	tienagas naturales	4207.731612	Natural	
	Reports +		12473.709894	Transformado	
	Export		12473.709894	Transformado	
	Exportan		12473.709894	Transformado	
	Appearance	con espacios naturales	266.548719	Transformado	
	20 Polygon 39 Pastos implos	-	12473.709894	Transformado	
	27 Polygon 60 Tejido urbano co	ntinuo	75.660321	Transformado	
н.	28 Polygon 60 Tejido urbano co	ntinuo	60.610641	Transformado	
	29 Polygon 60 Tejido urbano co	ntinuo	119.299961	Transformado	
H-	30 Polygon 60 Tejido urbano dis	continuo	16.384942	Transformado	
H-	31 Polygon 60 Pastos limpios	#1	141.710752	Transformado	
н-	32 Polygon 60 Mosaico de past	os y cutivos	169.477573	Transformado	
H-	33 Polygon 60 Mosaico de past	os y cutivos	344.352274	Transformado	~
14	1 1 1 1 9 9 0	out of 193 Selected)			
		out of 155 Selectedy			
CCo	b2016v1				

Una vez asignado el nombre del motor a cada cobertura, se unen todas las coberturas que hacen parte del mismo motor, de tal manera que se obtienen bloques o polígonos grandes que representan espacialmente el motor. Este proceso se genera haciendo uso de la herramienta de ArcGIS llamada **dissolve**, este proceso se hace utilizando el atributo motor del shape.

Input Features Input Features Dissolve_Field(s) (optional) Mile Image: Class Cilerers/WCOAL/Documents/ArcGIS/Default1.gdb/Wotor1_D Image: Class Dissolve_Field(s) (optional) Image: Class Image: Class Image: Class Combard: Dissolve_Field(s) (optional) Image: Class Select All Unselect All Statistic Field(s) (optional) Image: Class Statistic Type Field Statistic Type Field Statistic Type	- U <mark>×</mark>		Dissolve		
MIb Cubuck Teature Class Cubuck VICCA IP ocuments/VrcCIS/Default1.gdb/Wotor1_D Desove_Teld(g) (optiona) FID_MIA ModelDuider, allows you to add expected fields can complete the dialog box and continue to bu model. The field mile cubuck and continue to bu field statistic Type Field Field Statistic Type Field Fie	ssolve_Field(s) (optional)	~			Features
CiUcus Telaure Class The field of fields of which to aggregate field uter CiUcus Telaure Class The Add Field button, which is used only in PiD Image: Class Cl	a fald ar fialda an which to approacts features		- E		
C:Lisers/NICOLAT/Documents/VicolS/Default1.gdb/Wotor1_D Desker_Eriel(s) (optional) PED_MIA WotrCR PED_Inite ContGorRA COO_DEPART COO_DEPART Select AI Unselect AI Statistic Type Fiel Statistic Field(s) (optional) Fiel Statistic Type Fiel Fiel Fiel Fiel Fiel Fiel Fiel Fie	a neid of neids on which to aggregate leatures.				t Feature Class
Stack/E Field(s) (optional) FID JMIA V MOTOR PID JMIA V MOTOR PID Jmite CATESORIA COCO DEPART COCO MUNICI Statistics Field(s) (optional) Field Statistics Field(s) (optional) Coco Statistic Type Field Statistics Type Coco Statistic Type Field Statistics Type Coco Statistic Type Coco S	e Add Field button, which is used only in			Default1.gdb\Motor1_D	sers WICOLAI \Documents \ArcGIS \D
FID can complete the dialog box and continue to bu model. Ø MOTOR FID_Imite NOMBER: ENT model. CATESORIA Catesoria COD_BERART COD_BERART CCOD_BERART COD_GERART Field Statestic Tryle Field Statestic Tryle	delBuilder, allows you to add expected fields so you				/e_Field(s) (optional)
PD_JNA model. PD_Linte induce. PD_Dinte induce. PD_Dinte induce. Cotoperation induce. Select Al Unselect Al Statistics Field(c) (optional) induce. Field Statistic Type	1 complete the dialog box and continue to build your		^		ID NAME
FID_limite IDdBack_Bit CATESORIA DEPARTAMEN COO_DEPART COO_MUNICI Select AI Unselect AI Add Field Statistics Field(s) (optional) Field Statistics Type	del.				
N COMBRE _BIT CATEGORIA DEPARTAMEN COD_DEPART COD_DEPART COD_MUNICL COD_MUNIC					ID_Limite
C ATEORIA DEPARTAMEN COO, DEPART COO, MINICI COO, MINI					OMBRE_ENT
DEPART COD_DEPART COD_MUNICI Select AI Unselect AI Add Field					ATEGORIA
COD MUNICI COD MUNICI COD MUNICI Select AI Unselect AI Add Field Statistics Field(s) (optional)					EPARTAMEN OD DEBART
Select AI Unselect AI Add Field Statistics Field(s) (optional)			~		OD_DEPART
Select AI Unselect AI Add Field Statistics Field(s) (optonal) Field Statistic Type K K K K K K K K K K K K K			>		00 101101
Field Statistic Type			Add Eield		alact All Lincolact All
Field Statistic Type			Addition		ice Field(c) (ontional)
Field Statistic Type			~		ica neura) (optional)
Field Statistic Type					
			±	Statistic Type	
			×		
			Т		
< V			+		
<					
		\sim	>		

NOTA: Los dos procesos anteriores deben hacerse motor por motor, pues dichos procesos no son excluyentes, por lo que una misma tipología de cobertura puede hacer parte de varios motores.

Después de tener una capa de polígonos para cada motor, se convierte cada una de estas a un shape de puntos, en donde el atributo principal sea el nombre del motor. Este proceso se genera haciendo uso de la herramienta de ArcGIS llamada **convert- features to point**, este proceso se hace utilizando el atributo que contiene el nombre del motor.

Con todas las capa listas de puntos para cada motor, se genera un archivo único que contenga todos los motores. Este proceso se genera haciendo uso de la herramienta de ArcGIS llamada **Editor**, aquí se editan todas las capas de puntos y se copia y pega la geometría a un solo archivo, obteniendo como resultado una capa geográfica que contienen todos los puntos de todos los motores. Dicha capa fue nombrada "motores_point"

Una vez obtenida la capa única de motores se le agrega dos campos de atributos adicionales que contengan las coordenadas de latitud y longitud. De esta manera la tabla de atributos de dicha capa solo debe contener tres campos, a saber, nombre del motor, latitud y longitud. Este proceso se genera haciendo uso de la herramienta de ArcGIS llamada **Add XY coordinates.**

5	Add XY Coordinates	- 🗆 ×
Input Features motores		Add XY Coordinates Adds the fields POINT_X and POINT_Y to the point input features and calculates their values. It also appends the POINT_Z and POINT_M fields if the input features are Z- and M-enabled.
		INPUT
	v	OUTPUT (3,6) (5,2)
OK Cancel E	Environments << Hide Help	Tool Help

La tabla de atributos del shape de puntos de motores, debe ser convertida a una tabla tipo .cvs, púes este es el formato que reconoce Maxent de las variables dependientes, para la construcción del modelo de probabilidades.

Una vez convertidas las unidades de análisis en una tabla tipo .cvs y con las variables explicativas en formato raster, se dispone a utilizar dicha información en el software Maxent para generar los análisis de asociaciones entre variables. En este sentido, se tiene dos grupos de variables; las independientes (variables biofísicas y socio-económicas) y las dependientes (puntos de motores de fragmentación). La asociación de variables se hace con el software **Maxent**, diferenciando aquellas variables categóricas de las continuas.

Maximum Entropy Species Distribution Modeling, Version 3.4.1 – 🕒 📫							
Samples			En	vironmental layers			_
File pasMaxent\motores\wgs\MOTORES.c	Browse Di	irectory/File	:\SINCHI1\Ca	ipasMaxent\motores\wgs\a	sc Brow	/se	
		dens_vial		Continuous		-	-
		distr_upar	IS	Continuous		•	
F 2		distr_upas	;	Continuous		•	
		🖌 gini		Continuous		•	=
₩ 3		noreno		Continuous		•	
		part_agric	ola	Continuous		-	
¥ 4		part_agro	pe	Continuous		-	
		part_bosq	ues	Continuous		-	
⊮ 5		part_past)S	Continuous		-	
		pobl_cna		Continuous			
⊮ 6			loctall	Continuous	ct all		-
		30	aect all	Desele	ctaii		
✓ Linear features				Create resp	oonse curv	es [~
✓ Quadratic features				Make pictures of	of predictio	ns [~
Product features			Do jac	kknife to measure variabl	e importan	ce [
Threshold features				Output format	Cloglog	-	-
V Hinge features	0.4.4.5			Output file type	asc		-
	Output directory		-		Brow	se	-
P Auto leatures	Projection layers	directory/fil	e		Brow	se	
Run	Settings Help						

NOTA: Para poder correr el modelo en maxent se debe tener todas las variables explicativas en formato ascii, incluidas en una misma carpeta y todas con las mismas características de fuente. Es decir, mismo sistema, de coordenadas (wgs 84), mismo extent y mismo número de columnas y de filas. Adicionalmente para que el Maxent arroje mayor información útil para los posteriores análisis, se debe habilitar las opciones de crear curvas de respuesta y crear medidas de importancia según prueba de navaja.

Los resultados que arroja maxent permiten identificar cuáles son las variables que tienen una mayor y menor contribución a la ocurrencia de cada unidad de fragmentación, y además genera unas gráficas de respuesta por cada variable explicativa utilizada y los respectivos mapas que muestran espacialmente donde son las probabilidades de ocurrencia del motor.

¹ En Maxent, en cada iteración del algoritmo de entrenamiento, el aumento en la ganancia normalizada, se agrega a la contribución de la variable correspondiente, o se resta de ella, si el cambio al valor absoluto de la función utilizada es negativo.

² En este caso, para cada variable ambiental a su vez, sus valores en la presencia de entrenamiento y los datos de fondo se permutan aleatoriamente. El modelo se reevalúa en los datos permutados, y la caída o depresión resultante en el AUC (por su sigla en inglés, área bajo la curva) de entrenamiento se muestra en la tabla, normalizada a porcentajes.

FORMATO: PROTOCOLO

Vías	46,1	Unidad	30,4
Poblados	20,9	Vías	17,7
Unidad	18,3	Poblados	9,8
Vocación	3,6	Upas_pro	6,1
Part_bosque s	2,8	Part_bosques	5,5
Gini	2,5	Distr_upas	5

Curvas de respuesta relativa individual³

Curvas de respuesta de dependencia⁴

³ Muestran cómo la probabilidad de presencia prevista del motor cambia a medida que varía cada variable ambiental, manteniendo todas las demás variables ambientales en su valor de muestra promedio.

⁴ Reflejan la dependencia de la idoneidad predicha tanto de la variable seleccionada como de las dependencias inducidas por las correlaciones entre ésta y las demás variables.

3.2 CORRELACIÓN ENTRE MOTORES

Dado que todos los motores de fragmentación no son excluyentes, y que todos tienen alguna relación ya sea desde aspectos biofísicos, socio-económicos y/o espaciales, se elaboró un análisis de correlación entre motores por unidades de análisis de fragmentación. Para lo anterior, se usó los resultados obtenidos del maxent, específicamente los mapas de probabilidades y las unidades de fragmentación (fisiografía-grado de fragmentación - patrón).Con lo anterior, se estimó la correlación espacial entre motores, al calcular el área que existe por motor en cada unidad de análisis.

Los insumos necesarios para el análisis son:

- 1. Mapas de probabilidades de cada motor
- 2. Unidades de análisis (Fisiografía-grado de fragmentación-Patrón)

Con la información anterior se procede a desarrollar el procedimiento descrito en el flujograma a continuación:

La capa de unidades de fragmentación fue disgregada por cada unidad, de tal manera que se obtuvo como resultado 19 capas en formato vector que hacen referencia a cada unidad de análisis. De esta manera fue posible calcular el área que hay en cada unidad de análisis por motor de fragmentación, dato que permitió elaborar los análisis de correlación.Este proceso se genera haciendo uso de la herramienta de ArcGIS llamada **Split by atributes**, la cual permite obtener como resultado una capa cartográfica por el atributo seleccionado, en este caso "unidad".

Instituto SINCHI	FORMATO: PROTOCOLO	Código: FP-CCOB-4 Versión: 1.0
	Spirt By Attributes - X	

Una vez obtenidas 19 capas referentes a cada unidad de análisis, se realizó un análisis de estadísticas por tabla,. Este proceso se genera haciendo uso de la herramienta de ArcGIS llamada **Zonal statistics as table**, la cual resume los valores de una capa raster dentro de las zonas de otro conjunto de datos e informa los resultados en un tabla. Para este caso en particular, los archivos raster corresponden a la predicción de la distribución de cada motor de fragmentación y las zonas, corresponden a las unidades de análisis que resumen grado de fragmentación, patrón de fragmentación y fisiografía.

OK Cancel Environments... Show Help >>

	Zonal Statistics as Ta	ble		×
Input raster or feature zone data			Input value raster	7
Altillanura_Alta_Geometrico				
Zone field			Raster that contains the values on which to calculate a	
FID_cob_mu	~		statistic.	
Input value raster				
J:\SINCHI1\CapasMaxent\motores\RESULTADOS1\PMotor1.asc	e			
Output table				
C:\Users\VICOLAI\Documents\ArcGIS\Default1.gdb\altilanura_alta_g	e			
Ignore NoData in Calculations (optional)				
Statistics type (optional)				
ALL	Y			
		\sim		
		- 1		
OK Cancel Environ	ments << Hide Help		Tool Help	

NOTA: Dado que el proceso anterior es necesario ejecutarlo para cada unidad de análisis dentro de cada motor de fragmentación, se recomiendo correr el proceso mediante el **batch** de la herramienta **Zonal statistics as table,** el cual permite ejecutar el proceso de manera simultánea para todas las unidades. De esta manera, dicho proceso se ejecuta 6 veces, las cuales hacen referencia a cada motor de fragmentación.

Las tablas de los procesos anteriores fueron editadas, de tal manera que se pudiera visualizar en una sola tabla el área que existe por pixel de cada motor por unidad de análisis, así como proceso final fue posible estimar el índice de correlación múltiple a través de Microsoft **excel**. El resultado final muestra la correlación que existe entre motores por unidad de análisis de fragmentación

10	A	D	- C	0	E .	P P	9
1	ID	M1	M2	M3	M4	M5	M6
2	29	21.4048	4.78945	21.376301	5.0831	6.57108	1.69465
3	33	113.574402	25.35462	19.66818	22.93391	50.957159	1.68367
4	38	40.042	5.23352	41.326401	8.41074	16.983999	2.89368
5	39	120.125999	15.70056	123.979202	25.23222	50.951998	8.68104
6	40	40.042	5.23352	41.326401	8.41074	16.983999	2.89368
7	41	61.1717	9.17752	61.449202	13.32029	24.293129	4.65726
8	43	175.3272	37.764289	79.470901	47.142081	131.505532	11.96817
9	45	41.1507	6.56076	40.786001	9.11492	15.80113	3.21042
0	46	124.560799	21.00952	121.817604	28.048941	46.22052	9.948
1	47	20.268	3.2657	21.844	4.38475	7.6466	1.37262
2	52	36.2931	5.39448	43.688	7.82205	18.710999	2.41218
13	53	253.825001	51.392851	244.321805	58.101119	78.098915	20.79049
4	54	75.518801	14.96511	85.972902	17.53387	33.628441	5.43969
15	56	26.8452	12.6693	74.6698	10.0783	17.2607	3.44029
6	59	161.379498	46.422372	324.130211	48.585029	116.938499	8.96203
7	60	18.392799	1.80232	20.6632	3.18161	11.2103	0.874127
8	61	18.392799	1.80232	20.6632	3.18161	11.2103	0.874127
9	62	123.442896	11.57989	100.836552	22.28153	86.580803	4.443131
20	63	55.7843	6.54131	45.47455	11.15879	31.77695	2.282114
21	64	4.586034	0.012176	7.337963	5.77514	40.216002	0.022926
22	65	268.414392	85.662442	372.550308	90.461098	287.243694	14.48249
23	66	161.098395	19.064534	183.807205	29.49761	102.789072	7.920715
24	67	92.287298	10.29529	71.673671	17.49222	78.019802	3.729678
25	68	77.010802	15.25823	73.243431	24.38488	29.29478	3.16846
26	69	119.997299	22.716421	85.945563	28.41768	49.895342	7.111119
27	72	0.12082	0.001346	0.075385	2.79646	54.523102	0.000204
28	73	0.12082	0.001346	0.075385	2.79646	54.523102	0.000204
9	75	0.12082	0.001346	0.075385	2.79646	54.523102	0.000204
80	76	0.254393	0.016458	0.654276	3.45139	22.3381	0.004012
1	77	0.24164	0.002691	0.150771	5.59292	109.046204	0.000409
32	78	31.4277	8.48239	65.698402	9.10341	25.0317	1.62617
3	79	0.194654	0.002043	0.673503	2.79278	21.610201	0.002543
14	81	93.529997	29.644421	190.552505	29.83145	71.502699	5.4205
5	82	26.8452	12.6693	74.6698	10.0783	17.2607	3.44029
86	83	33.548199	10.4876	63.517502	10.6374	20.9217	2.04176
37	88	19.207399	2.97308	20.122801	3.83092	9.90409	1.07642
8	89	18.392799	1.80232	20.6632	3.18161	11.2103	0.874127
9	90	33.247799	2.91374	12.1225	6.37006	27.826401	0.631082
10	91	29.4977	2.184568	12.1225	5.57854	32.4764	0.518278
11	95	20.021	2.61676	20.6632	4.20537	8.492	1.44684

Aluvial –Baja-Isla

		M1	M2	М3	M4	M5	M6	
	M1	1						
	M2	0.940	1					
	M3	0.765	0.620	1				
\mathbf{V}	M4	0.911	0.975	0.520	1			
	M5	0.912	0.834	0.779	0.813	1		
	M6	0.539	0.645	0.408	0.626	0.380	1	

4. ANÁLISIS DE CONECTIVIDAD ECOLÓGICA – ÁMBITO REGIONAL

La conectividad es aquella característica del paisaje que define la capacidad movimiento y dispersión de las especies, el intercambio genético, y otros flujos ecológicos. La conectividad es así un aspecto a considerar en análisis de cambio y monitoreo de los paisajes bajo altas tasas de transformación, en los que se pretenda implementar acciones que faciliten el movimiento de individuos, como la construcción de corredores con condiciones favorables que conecten zonas de hábitat naturales remanentes.

La metodología a escala Regional desarrolla el análisis de conectividad ecológica desde la propuesta de Matriz General de Resistencia en donde se aborda el análisis desde el punto de vista de la Intensidad del Uso del Paisaje, el tiempo de intervención del paisaje, la vulnerabilidad de los paisajes a la transformación y la perdida y fragmentación del paisaje.

4.1. Matriz General de Resistencia – Índice Espacial de Huella Humana (IEHH)

Para la construcción de la matriz de resistencia correspondiente al IEHH se considera la suma de los valores individuales de un conjunto de variables indicadoras, representadas como matrices de resistencia individuales agrupadas en cuatro factores fundamentales: a) Intensidad de uso del paisaje (Fint), b) Tiempo de intervención del paisaje (Ftime), c) la vulnerabilidad de los paisajes a su transformación (Fvul) y el Factor de pérdida y fragmentación de hábitats (Ffrag). Cada uno de los componentes es alimentado por diferentes variables, representadas en las matrices individuales.

$$IEHH = \frac{\left(F_{int} + F_{time} + F_{vul} + F_{frag}\right)x\ 100}{\left(F_{int}\max + F_{time}\max + F_{vul}\max + F_{frag}\max\right)}$$

NOTA: El IEHH se denominará Matriz General de Resistencia - MGR

Para la generación de la Matriz General de Resistencia (MGR), en primera instancia se deben sumar los valores de cada una de las variables indicadoras generadas, para cada uno de los factores asociados al IEHH. El siguiente ejemplo corresponde al ámbito regional implementado:

- F_{int} = CT (Clus)+ DD (CRrh) + DV (CRat)+ DP (CRcp)+ DNR (CMnr) + IF (CRfg)
- $F_{time} = DT (CDtc)$

El ambiente es de todos

Instituto

SINCH

- $F_{vul} = VS (CVco) + P (CRpe)$
- F_{frag} = AHR (CAhr) + PHT (CPht)+ IET (Clet)

Las variables indicadoras para cada Factor se describen a continuación.

Tabla. Variables Indicadoras	y Factores de la Matriz General de Resistencia - IEHH	
		_

CRITERIO	VARIABLE INDICADORA	
	Intensidad de uso de la tierra (Clus)	СТ
	Distancia Drenajes (CRrh)	DD
Factor Intensidad Uso de la tierra - (Fint)	Distancia a Vías (CRat)	DV
	Distancia a centros poblados (CRcp)	DP
	Distancia a sitios de explotación de recursos no	סואם
	renovables (CMnr)	
	Índice de fragmentación * (CRfg)	IF
Factor de Tiempo de Intervención del	Dinámicas de transformación de las coberturas	пт
Paisaje - (Ftime)	(CDtc)	וט
Factor de Vulnerabilidad de los Paisajes -	Vocación de los suelos (CVco)	VS
(Fvul)	Pendiente (CRpe)	Ρ
Factor do Dórdido y Fragmontación	Aislamiento del hábitat remanente (CAhr)	AHR
	Porcentaje de hábitat transformado (CPht)	PHT
(Efrag)	Índice de extensión de la transformación de	ICT
- (riiay)	hábitats (Clet)	

Para el desarrollo de los Factores de Intensidad, Vulnerabilidad, Tiempo de Intervención y Pérdida de Hábitats se deben generar variables indicadoras y posteriormente agruparlas.

Para la generación del Factor de Intensidad de Uso del Suelo es necesario procesar información relacionada a distancia a actividades antrópicas que se representan con distribuciones en el territorio. Obteniendo dichas matrices de variables se procede a generar la suma de sus valores y finalmente general el Factor deseado (Fint)

A continuación, se describen los procedimientos para generar las matrices Clus, CRrh, CRat, CRcp, CMnr y CRfg.

4.1.1 Variable Intensidad Uso de la Tierra - CT (Clus)

Los insumos necesarios para el procesamiento son:

El ambiente es de todos

Instituto

SINCH

1. Capa de Coberturas del Suelo año 2016 (CCob2016v1)

Con la información anterior se procede a desarrollar el procedimiento descrito en el flujograma a continuación:

Teniendo en cuenta la Tabla 1 tomada como referencia para la generación del índice de fragmentación, se procede a adicionar los campos Tipo, Valor y Categoría a la capa de coberturas de la tierra CCob2016.

Posterior a la adición de nuevos campos en los atributos de la capa CCob2016v1 se procede a transformar la capa Vectorial en Raster mediante el atributo "Categoría". Para hacer este proceso se debe utilizar la herramienta "**Polygon to Raster**" que se encuentra en el **Toolbox – Conversion Tools** – **To Raster – Polygon to Raster**, ingresando como parámetro de creación el atributo "Categoría" y con tamaño de celda de 30 metros.

No Polygon to Raster	-			×
Input Features		•		^
Value field				
Output Raster Dataset E-IEDEEI ANTERATOTIMONIO, NATI DAI IGEE, Corradoració SIGIó Gaodata Bactari/Cob 20	IGut Class	. HF		
Cell assignment type (optional)	.001_088	5.01		
Priority field (optional) NONE			~	
Cellsize (optional) 30			6	
				Ľ
OK Cancel Environment	s 5	Show H	elp >>	>

Como resultado de este proceso se genera una capa Raster de Categoría de Cobertura con los valores 1, 3 y 5 que se denominará "Intensidad de Uso de la Tierra" *Clus2018.*

4.1.2 Variable de Resistencia a Rondas Hídricas - DD (CRrh)

Los insumos necesarios para el procesamiento son:

- 1. Capa de Rondas Hídricas (CCob2016v1)
- 2. Límite Área de estudio Regional SINCHI (DLim)

Con la información anterior se procede a desarrollar el procedimiento descrito en el flujograma a continuación:

La capa RyP_Mun es extraida de las Bases de Datos de SINCHI, en donde se clasifican los cuerpos de agua teniendo en cuenta la pendiente y su representación en el territorio. Para el desarrollo de esta metodología, se procede a seleccionar únicamente los Drenajes Dobles; esta selección se hace mediante la Herramienta "**Select by Attribute**" de la Barra de Herramientas **Selection**, en dicha herramienta se hace una selección de la columna COMP_RONDA y se selecciona el Atributo "Dren_Doble".

Select By A	ttributes	×			
Layer:	Layer:				
Method:	Create a new selection	~			
"FID" "OBJECTII "COMP_Re "Shape_Le "Shape_Ar	D" KONDA" eng" rea"				
= < > > < < _ % (Like "Drenaje doble" And "Drenaje doble en Pendientes >" Lago o laguna" Or Lago o laguna en Pendientes > "Pendientes >100"." Not	100%' 100%' >			
Is Ir SELECT * FI "COMP_RO	n Null Get Unique Values Go To: ROM RyP_Mun WHERE: DNDA* = "Drenaje doble"	< >			
Clear	Verify Help Load	Save			
	OK Apply	Close			

Habiendo seleccionado únicamente los Drenajes Dobles, se exporta esta nueva capa y se ejecuta el comando Euclidian Distance que se encuentra en la Caja de herramientas **Spatial Analyst Tools – Distance – Euclidean Distance**. Las variables cargadas en esta herramienta son básicamente la nueva capa de Drenajes Dobles en la Zona de estudio regional (Límite SINCHI) y los parámetros de cálculo son: tamaño de celda 30 metros; Extent del proceso es el límite SINCHI (Environments) y ruta de archivo de salida.

🔨 Euclidean Distance - 🗆 🗙	🛠 Environment Settings 🛛 🗙
Input raster or feature source data RyP_Mun Uutput distance raster	 ¥ Workspace > Output Coordinates \$ Processing Extent
F-\FREELANCE\PATRIMONIO_INATURAL\GEF5_Corredores\6 SIG\6 Geodata\Raster\SupContVariablesMR\C[📸 Maximum distance (optional)	Extent Same as layer DLIM2014
Output cell size (optional) Output cell size (optional) Output direction raster (optional)	Left Right -77,670617 Bottom -4,225780
	Snap Raster
v	 ➤ M Values ➤ Z Values ➤ Gendatabase
OK Cancel Environments Show Help >>	OK Cancel Show Help >>

NOTA: Es importante tener en cuenta que esta herramienta requiere de la estabilidad del equipo y la memoria RAM por lo que se recomienda inicialmente generar el Resultado en la GDB default de ArcGIS y posteriormente exportar dicho resultado a la estructura de carpetas del proyecto.

Como resultado de la Distancia Euclidiana se tiene una matriz (Raster) de distancias (*CDri2018v1.tif*); Sin embargo, es necesario recortar la imagen al área de estudio regional. Este paso se hace mediante la herramienta Extract by Mask que se encuentra en **Spatial Analyst Tools – Extraction – Extract by mask.**

Institute amazonico de SINCHI	FORMATO, FROTOCOLO	Versión: 1.0
γ ε Γς Ιη Ο Ο Ε	ixtract by Mask — — — > > > > > > > > > > > > > > > >	
	OK Cancel Environments Show Help >>	

Teniendo el resultado del proceso anterior, se procede a reclasificar la matriz de distancias. Inicialmente se procede a clasificar en 3 rangos de acuerdo a los Intervalos Geométricos de la información.

A cada clase generada se procede a reasignar los valores de 1, 3 y 5, en donde 1 corresponde a las distancias cercanas a los Drenajes Dobles, 3 corresponde a distancias intermedias y 5 a zonas lejanas de los drenajes dobles, este proceso se hace mediante la herramienta Reclassify que se encuentra en **Spatial Analyst Tools – Reclass – Reclassify**.

Versión: 1.0	El ambiente Minambiente	FORMATO: PROTOCOLO	Código: FP-CCOB-4
	amazona de la constructiona de la construction		Versión: 1.0
Reclassify - × Input raster [CD:2018v1.tif Imput raster Reclassification Imput raster Imput raster 0.1364.772516 1 Imput raster 0.1364.772517 1 Imput raster 0.1364.772518 1 Imput raster 0.1364.772516 2 1 0.1364.772516 1 Imput raster 0.1364.772517 5 5 0.1364.772518 1 Imput raster 0.1090.1 NoData NoData 0.1090.1 1 Imput raster F: FREELANCE (PATRIMONIO_NATURAL (GEF5_Corredores (6 SIG/6 Geodata (Raster (CRrhz018v1.tif Imput raster	<u>ح</u>	Reclassify – Input raster (Dri2018v1.tif Reclass field VALUE Co- 1364,772516 1 1064,772516 1 1064,772516 2054,23386 3 8254,233864 4.9032,6875 5 NoData NoData Add Entry Delete Entries Load Save Reverse New Values Precision Dutput raster F: \FREELANCE\PATRIMONIO_NATURAL \GEF5_Corredores\6 SIG\6 Geodata\Raster\CRrh2018v1.tif	

El resultado de este proceso se denomina variable de Resistencia de Rondas Hídricas nombrada CRrh. Ver imagen a continuación:

OK Cancel Environments... Show Help >>

4.1.3 Variable de Resistencia Vías o Accesos Terrestres - DV (CRat)

Los insumos necesarios para el procesamiento son:

- 3. Capa de Vías (Transporte Terrestre IGAC 100K)
- 4. Límite Área de estudio Regional SINCHI (DLim)

Con la información anterior se procede a desarrollar el procedimiento descrito en el flujograma a continuación:

La capa de Vias se obtiene del dataset Accesos Terrestres de la Base de datos de cartografía básica generada por el Instituto Geográfico Agustín Codazzi – IGAC a escala 1:100.000. Al ser una base de datos geográfica a nivel nacional es necesario cortar las vías que se encuentran de nuestra área de estudio por lo que se procede a hacer un Clip a las vías usando la herramienta Clip que se encuentra en **Analysis Tools – Extract – Clip**.

🔨 Clip				-		-		2	×
Input Fea	tures								~
Via							•	2	
Clip Featu	res							_	
DLIM20	4						-	6	
Output Fe	ature Class							_	
D: FREE	ANCE PATRIMO	NIO NATURAL (PRO	DCESOS\SHP\Via:	_SINCHI.shp				6	
XY Tolera	ice (optional)								
					De	ecimal degree	s	\sim	
									\mathbf{v}
			OK	Cancel	Environm	ients	Show H	lelp >>	

Teniendo las vías del área de estudio regional únicamente se procede a general la matriz de distancia mediante el uso de la herramienta Euclidian Distance que se encuentra en la Caja de herramientas **Spatial Analyst Tools – Distance – Euclidean Distance**. Las variables cargadas en esta herramienta son básicamente la nueva capa de Vías de la Zona de estudio regional (Vías_SINCHI) y los parámetros de cálculo son: tamaño de celda 30 metros; Extent del proceso es el límite SINCHI (Environments) y ruta de archivo de salida.

		Código: FP-CCOB-4
CHI	FURMATU: PRUTUCULU	Versión: 1.0
Luclidean Distance	- C X	×
Input raster or feature source data [Vias_SINCH] Output distance raster [F:\PREELANCE\PATRIMONIO_JNATURAL\GEF5_Corredores\6 SIG\6 Ge Meximum distance (optional) Uutput cell size (optional) [b0 Output direction raster (optional)	Vorkspace Vorkspace	Top C C C C C C C C C C C C C C C C C C C
	Snap Raster × XY Resolution and Tolerant × M Values × Z Values	-4,225780
ОКС	ancel Environments Show Help >>	OK Cancel Show Help >>

NOTA: Es importante tener en cuenta que esta herramienta requiere de la estabilidad del equipo y la memoria RAM por lo que se recomienda inicialmente generar el Resultado en la GDB default de ArcGIS y posteriormente exportar dicho resultado a la estructura de carpetas del proyecto.

Como resultado de la Distancia Euclidiana se tiene una matriz (Raster) de distancias (*CAcc2018v1.tif*); Sin embargo, es necesario recortar la imagen al área de estudio regional. Este paso se hace mediante la herramienta Extract by Mask que se encuentra en **Spatial Analyst Tools – Extraction – Extract by mask.**

CAcc2018v1.tif Imput raster or feature mask data DLIM2014 Imput raster Output raster Imput raster F: IFREELANCE IPATRIMONIO_NATURAL (GEF5_Corredores)6 SIG (6 Geodata Raster (SupContVariablesMR (CF)))	Input raster				
Input raster or feature mask data DLIM2014 Image: Comparison of the state of	CAcc2018v1.tif			-	2
DLIM2014 Output raster F: FREELANCE PATRIMONIO_NATURAL \GEF5_Corredores \6 SIG \6 Geodata \Raster \SupContVariablesMR \Cz \	Input raster or feature mask data				
Output raster F: FREELANCE (PATRIMONIO_NATURAL (SEF5_Corredores) 6 SIG (6 Geodata/Raster (SupContVariablesMR (CF)	DLIM2014			-	6
F:\FREELANCE\PATRIMONIO_INATURAL\GEF5_Corredores\6 SIG\6 Geodata\Raster\SupContVariablesMR\C/S	Output raster				
	F: FREELANCE PATRIMONIO_NATUR	AL\GEF5_Corredores\6 SIG\6 Geoda	ta\Raster\SupContVaria	blesMR\CA	6
		OK Carro	Environments	Show I	telo >>

Teniendo el resultado del proceso anterior, se procede a reclasificar la matriz de distancias. Inicialmente se procede a clasificar en 3 rangos de acuerdo a los Intervalos Geométricos de la información. Es importante tener en cuenta que para esta Variable se debe tener en cuenta que las distancias más lejanas son las de menor resistencia y las más cercanas son las de mayor resistencia.

Lever Decembine			-
Layer Properties		Classification	×
General Source Key M	etadata Extent Display Symbology Tir	Classification	Classification Statistics
Show: Vector Field Unique Values Classified Stretched Discrete Color	Draw raster grouping values into cla Fields Value <value> N Classification</value>	Method: Geometrical Interval V Classes: 3 V Data Exclusion Exclusion Sampling	Count: 538453680 Minimum: 0 Maximum: 278 553,1563 Sum: 29 787 155 910 000 Mean: 55 319,81119 Standard Deviation: 60 951,73448
	Geometrical Interval	Columns: 100 🛨 🗌 Show Std. Dev. 🗌 Show Mean	
About symbology	Color Ramp Symbol Range 0 - 12 111, 13363 12 111, 13363 12 111, 13363 - 63 183, 36065 63 183, 36065 - 278 553, 1563 63 183, 36065 - 278 553, 1563 53 183, 36065 - 278 553, 1563 Show class breaks using cell values Use hillshade effect 2; 1	1.0e+08- 1.0e+08- 1.0e+07- 6.0e+07- 4.0e+07- 2.0e+07- 1.0e+07- 1.0e+08- 1.0e+08- 1.0e+08- 1.0e+08- 1.0e+08- 1.0e+08- 1.0e+08- 1.0e+08- 1.0e+08- 1.0e+08- 1.0e+08- 1.0e+08- 1.0e+08- 1.0e+08- 1.0e+08- 1.0e+07-07- 1.0e+07-07-07-07-07-07-07-07-07-07-07-07-07-0	Break Values % 55 12 111,13363 63 183,36065 278 553,1563
		0.0e+00	0K
		Snap breaks to data values	Cancel

A cada clase generada se procede a reasignar los valores de 1, 3 y 5, en donde 5 corresponde a las distancias cercanas a las vías o accesos terrestres, 3 corresponde a distancias intermedias y 1 a zonas lejanas de las vías o accesos terrestres, este proceso se hace mediante la herramienta Reclassify que se encuentra en **Spatial Analyst Tools – Reclass – Reclassify**.

Input raster CAcc2019v1.tif Reclass field VALUE Reclassification Cold values 0 Cld values 0 - 12111,133626 5 12111,133626 5 12111,133626 5 12111,133626 5 12111,133626 5 1000 12111,133626 5 1000 1	🔨 Reclassify	- 🗆 X
Netuasinasidi 0 12111,133626 12111,133626 5 12111,133626 1 1313,306053 278553,15 1 1 NoData NoData Add Entry Delete Entries Load Save Reverse New Values Precision Output raster F: (FREELANCE (PATRIMONIO_NATURAL (SEF5_Corredores)6 SIG/6 Geodata/Raster/CRat2018v1.8f	Input raster CAcc2018v1.tif Reclass field VALUE Dedeemilipation	
Load Save Reverse New Values Precision Output raster F:/FREELANCE/PATRIMONIO_NATURAL/SEF5_Corredores/6 SIG/6 Geodata/Raster/CRat2018v1.tbf Image: Signal Action of Charge microscope Values to NoDiata (rotional)	Old values New values 0 - 12111,133626 5 12111,133626 5 12111,133626 1 63183,3606 3 MoDeta NoData	Classify Unique Add Entry Delete Entries
	Load Save Reverse New Values Output raster F: \FREELANCE\PATRIMONIO_NATURAL\GEF5_Corredores\6 Change missing values to NoData (optional)	Precision SIG\6 Geodata\Raster\CRat2018v1.tif

El resultado de este proceso se denomina variable de Resistencia de Accesos Terrestres nombrada CRat. Ver imagen a continuación:

4.1.4 Variable de Resistencia Centros Poblados - DP (CRcp)

Los insumos necesarios para el procesamiento son:

- 3. Centros Poblados MGN_URB_AREA_CENSAL (MGN DANE)
- 4. Límite Área de estudio Regional SINCHI (DLim)

Con la información anterior se procede a desarrollar el procedimiento descrito en el flujograma a continuación:

La capa de Centros Poblados se obtiene del Marco Geoestadístico Nacional del Departamento Administrativo Nacional de Estadística – DANE descargada de la página web <u>https://geoportal.dane.gov.co/descargamgn.html</u>. Al ser una base de datos geográfica a nivel nacional es necesario cortar los centros poblados que se encuentran dentro del área de estudio por lo que se procede a hacer una selección de los polígonos que representan centros poblados dentro del área de estudio regional (Límite SINCHI) usando la herramienta Clip que se encuentra en **Analysis Tools – Extract – Clip**. La capa del MGN tomada como insumo es MGN_URB_AREA_CENSAL.shp de la carpeta COLOMBIA.

🔨 Clip	_		×
Input Features			
MGN_URB_AREA_CENSAL		- 6	3
Clip Features			_
DLIM2014		- 6	3
Output Feature Class		_	
D:\FREELANCE\PATRIMONIO NATURAL\PROCESOS\SHP\Centros_Pob_SINCHI.shp		6	3
XY Tolerance (optional)			
	Decimal degrees		\sim
OK Cancel Environ	nments Sh	iow Help	>>>

Teniendo los centros poblados dentro del área de estudio regional únicamente se procede a general la matriz de distancia mediante el uso de la herramienta Euclidian Distance que se encuentra en la Caja de herramientas **Spatial Analyst Tools – Distance – Euclidean Distance**. Las variables cargadas en esta herramienta son básicamente la nueva capa de Centros Poblados de la Zona de estudio regional (Centros_Pob_SINCHI) y los parámetros de cálculo son: tamaño de celda 30 metros; Extent del proceso es el límite SINCHI (Environments) y ruta de archivo de salida.

🔨 Euclidean Distance — 🗆 🗙	🛠 Environment Settings 🛛 🗙
Input raster or feature source data CentroPob_SINCHI Output distance raster Coutput distance raster F:FREEL.MACE/PATRIMONIO_INATURAL (SEFS_Corredores)6 SIG/6 Geodata/Raster/SupContVanables/RK(X)	Workspace Vutput Coordinates Processing Extent Extent
Maximum distance (optional) Output cell size (optional) Doutput cell size (optional) Coutput direction raster (optional)	Same as layer DLIM2014
v	Snap Raster XY Resolution and Tolerance XI Values Z Values Condutabase
OK Cancel Environments Show Help >>	OK Cancel Show Help >>

NOTA: Es importante tener en cuenta que esta herramienta requiere de la estabilidad del equipo y la memoria RAM por lo que se recomienda inicialmente generar el Resultado en la GDB default de ArcGIS y posteriormente exportar dicho resultado a la estructura de carpetas del proyecto.

Como resultado de la Distancia Euclidiana se tiene una matriz (Raster) de distancias (*CDcp2018v1.tif*); Sin embargo, es necesario recortar la imagen al área de estudio regional. Este paso se hace mediante la herramienta Extract by Mask que se encuentra en **Spatial Analyst Tools – Extraction – Extract by mask.**

		Código: FP-CCOB-4
Institute amazonico de SINCHI	FURIMATO, FROTOCOLU	Versión: 1.0
	Extract by Mask — C X nput raster CDcp2018v1.tif nput raster or feature mask data DLIM2014 T C DUIN2014 T C P: \FREELANCE\PATRIMONIO_INATURAL\GEF5_Corredores\6 SIG\6 Geodata\Raster\SupContVariablesMR\CI C	
	OK Cancel Environments Show Help >>	

Teniendo el resultado del proceso anterior, se procede a reclasificar la matriz de distancias. Inicialmente se procede a clasificar en 3 rangos de acuerdo a los Intervalos Geométricos de la información. Es importante tener en cuenta que para esta Variable se debe tener en cuenta que las distancias más lejanas son las de menor resistencia y las más cercanas son las de mayor resistencia.

A cada clase generada se procede a reasignar los valores de 1, 3 y 5, en donde 1 corresponde a las distancias cercanas a los centros poblados, 3 corresponde a distancias intermedias y 5 a zonas lejanas de los centros poblados, este proceso se hace mediante la herramienta Reclassify que se encuentra en **Spatial Analyst Tools – Reclass – Reclassify**.

El ambiente		ΕΩΡΜΑΤΩ· ΡΡΩΤΩΩΟΙ Ω	Código: FP-CCOB-4
Instituto amazonico de SINCHI	ambiente		Versión: 1.0
	< Contraction of the second se	Reclassify - - × Input raster (CDcp2018v1.tif ✓ Reclassification 0/16/ values 5 12/111/135626 5 12/111/135626 5 12/111/135626 5 12/111/135626 5 12/111/135626 5 12/111/135626 5 12/111/135626 5 12/111/135626 5 12/111/135626 5 12/111/135626 5 12/111/153626 5 12/111/153626 5 12/111/153626 5 12/111/153626 5 12/111/153626 5 12/111/153626 5 12/111/153626 5 12/111/153626 5 12/111/153626 5 12/111/153626 5 12/111/153626 5 12/111/153626 5 12/111/153626 5 12/111/153626 5 12/111/153626 5 12/111/153626 5 12/111/153626 5 12/111/111 NoData 13/111 NoData 14/111 NoData 14/111 NoData <	

El resultado de este proceso se denomina variable de Resistencia de Centros Poblados nombrada CRcp. Ver imagen a continuación:

OK Cancel Environments... Show Help >>

4.1.5 Variable de Resistencia a Explotación de Recursos No Renovables - DNR (CMnr)

Los insumos necesarios para el procesamiento son:

- 4. Localización de Pozos EPIS (Fuente EPIS ANH)
- 5. Títulos Mineros (TITULOS SINCHI)
- 6. Límite Área de estudio Regional SÍNCHI (DLim)

Con la información anterior se procede a desarrollar el procedimiento descrito en el flujograma a continuación:

La capa de Pozos de Hidrocarburos se obtiene desde la página de la ANH-EPIS <u>http://www.anh.gov.co/Banco%20de%20informacion%20petrolera/EPIS/Datos/Forms/DispForm.aspx</u> <u>?ID=33</u> en donde se descarga la información referente a los pozos de hidrocarburos en diferentes estados de desarrollo, adicional a esto se solicita al SINCHI la capa de Títulos Mineros presentes en el área de estudio regional. Al tener por una parte una capa con geometría puntos (Pozos) y otra poligonal (Títulos) se requiere unificar la geometría para poder unir las capas y trabajarlas como "Recursos No Renovables".

Inicialmente se hace un Buffer a la capa de Pozos denominados "En Explotación" teniendo como radio de influencia 225 Metros, este proceso se hace con la herramienta ubicada en la ruta **Analysis Tools** – **Proximity – Buffer**.

N Buffer	-		\sim	
Input Features		_		~
Pozo Hidrocarburo		•	6	
Output Feature Class				
D: \FREELANCE \PATRIMONIO NATURAL \PROCESOS \SHP \PozosHidrocarburos_Poly.shp			2	
Distance [value or field]				
225 Meters			\sim	
◯ Field				
			\sim	
Side Type (optional)				
FULL			\sim	
End Type (optional)				
ROUND Marked (anti-anti-			~	
PI ANAR			~	
Dissolve Type (optional)				
NONE			\sim	
Dissolve Field(s) (optional)				v
			^	
OK Cancel Environments	. Sł	now He	lp >>]

El ambiente	Código: FP-CCOB-4
Instituto amazonico de SINCHI	Versión: 1.0

Con el resultado obtenido en el paso anterior, se procede a Unir la capa de Pozos en Explotación junto con la de títulos mineros mediante el uso de la herramienta Unión que se encuentra en la ruta **Analysis Tools – Overlay – Union**.

√ Union	-			×
Input Features			_	^
		-	6	
Features	Ranks		÷	
PozosHidrocarburos_Poly			~	
TitulosMineros			~	
		_	t	
			t	
		_		
<		>		
Output Feature Class				
D: \FREELANCE \PATRIMONIO NATURAL \PROCESOS \SHP \RedNoRen.shp			2	
JoinAttributes (optional)				
ALL			~	
XY Tolerance (optional)				
Meter	s		\sim	-
Gaps Allowed (optional)				~
OK Cancel Environment	s 9	Show H	lelp >:	>

Haciendo la unión de las dos capas (Pozos de Hidrocarburos en Explotación y Títulos Mineros) se crea la capa de Recursos No Renovables que será el insumo para la generación de la matriz de distancias.

Teniendo la capa de Recursos No Renovables dentro del área de estudio regional, se procede a general la matriz de distancia mediante el uso de la herramienta Euclidian Distance que se encuentra en la Caja de herramientas **Spatial Analyst Tools – Distance – Euclidean Distance**. Las variables cargadas en esta herramienta son básicamente la nueva capa de Recursos No Renovables de la Zona de estudio regional (RecNoRen_SINCHI) y los parámetros de cálculo son: tamaño de celda 30 metros; Extent del proceso es el límite SINCHI (Environments) y ruta de archivo de salida.

🔨 Euclidean Distance — 🗆 🗙	🛠 Environment Settings	×
Input raster or feature source data RecNoRen Cutput datance raster Cutput datance raster Fr:VREELANCE'PATRIXONUO JATURAL (SEF5_Corredores)6 SIG16 Geodata'Raster'SupContVariablesMR(CC)	Vorkspace Vorks	Â
Output cell size (optional) [50 Output direction raster (optional)	Top Top Right Left -77,670517 66,947215 Bottom -4,225780	
OK Cancel Environments Show Help >>	YY Resolution and Tolerance XY Resolution and Tolerance X Values Z Values Crendatabase OK Cancel Show Held	•

NOTA: Es importante tener en cuenta que esta herramienta requiere de la estabilidad del equipo y la memoria RAM por lo que se recomienda inicialmente generar el Resultado en la GDB default de ArcGIS y posteriormente exportar dicho resultado a la estructura de carpetas del proyecto.

Instituto	Ø	El ambiente es de todos	
SINCHI			

Como resultado de la Distancia Euclidiana se tiene una matriz (Raster) de distancias (*CDnr2018v1.tif*); Sin embargo, es necesario recortar la imagen al área de estudio regional. Este paso se hace mediante la herramienta Extract by Mask que se encuentra en **Spatial Analyst Tools – Extraction – Extract by mask.**

			-	2
			-	2
5_Corredores\6 SIG\6	5 Geodata\Ra	ster\SupContVaria	ablesMR\CE	6
	5_Corredores/6 SIG (5_Corredores 6 SIG\6 Geodata Ras	5_Corredores)6 SIG\6 Geodata\Raster\SupContVarie	5_Corredorea\6 SIG\6 Geodata\Raster\SupContVariableaMR\CC

Teniendo el resultado del proceso anterior, se procede a reclasificar la matriz de distancias. Inicialmente se procede a clasificar en 3 rangos de acuerdo a los Intervalos Geométricos de la información. Para esta Variable se debe tener en cuenta que las distancias más lejanas son las de menor resistencia y las más cercanas son las de mayor resistencia.

A cada clase generada se procede a reasignar los valores de 1, 3 y 5, en donde 1 corresponde a las distancias cercanas a los centros poblados, 3 corresponde a distancias intermedias y 5 a zonas lejanas de las áreas de explotación de recursos no renovables, este proceso se hace mediante la herramienta Reclassify que se encuentra en **Spatial Analyst Tools – Reclass – Reclassify**.

El ambiente		Código: FP-CCOB-4	
Instituto amazonico de SINCHI	TORMATO, FROTOCOLO	Versión: 1.0	
	Reclassify Reclassify Input raster CDn/2018v1.tif Reclass field VALUE Reclassification OLd Values OLd Values OLd Values Cassify Classify Clas	~	

El resultado de este proceso se denomina variable de Resistencia de Recursos No Renovables nombrada CMnr. Ver imagen a continuación:

OK Cancel Environments... Show Help >>

4.1.6 Variable de Fragmentación - IF (CRfg)

Aprovechando el desarrollo y espacialización del índice de Fragmentación en el capítulo 2, la generación de la Variable de Fragmentación para el Factor de Intensidad del Uso de la Tierra del Índice Espacial de Huella Humana consta básicamente de la reclasificación del índice en 3 rangos que están descritos en el proceso a continuación:

Tomando el índice de fragmentación (CFrg) se procede a reprocesar los valores del índice. Inicialmente se procede a clasificar en 3 rangos de manera Manual.

A cada clase generada se procede a reasignar los valores de 1, 3 y 5, en donde 1 corresponde a los menores valores del índice de fragmentación, 3 corresponde a valores intermedios del índice y 5 a los mayores valores de fragmentación, este proceso se hace mediante la herramienta Reclassify que se encuentra en **Spatial Analyst Tools – Reclass – Reclassify**.

Instituto Anazonico SINCHI	FORMATO: PROTOCOLO	Código: FP-CCOB-4 Versión: 1.0
	Reclassify - > Input raster - > (Frg2018/1.tif • • • Reclass field • • • Value • • • • Reclassification • • • • • 0.34 1 • <t< td=""><td></td></t<>	

El resultado de este proceso se denomina variable de Fragmentación nombrada CRfg. Ver imagen a continuación:

OK Cancel Environments... Show Help >>

Change missing values to NoData (optional)

Para la generación del Factor de Tiempo de Intervención del Paisaje básicamente se genera la matriz de dinámica de transformación de coberturas (Ftime).

A continuación, se describe el procedimiento para generar la Matriz de Dinámica de Transformación de Coberturas.

4.1.7 Variable de Dinámica de Transformación de Coberturas - DT (CDtc)

Los insumos necesarios para el procesamiento son:

- 1. Cobertura de la Tierra periodo 2007 (CCob2007v4)
- 2. Cobertura de la Tierra periodo 2012 (CCob2012v2)
- 3. Cobertura de la Tierra periodo 2016 (CCob2016v1)

Con la información anterior se procede a desarrollar el procedimiento descrito en el flujograma a continuación:

Inicialmente se procede a Adicional un nuevo campo en la capa geográfica CCob2007v4 y CCob2012v2 denominada Tipo en donde se clasificarán las coberturas entre Natural y Transformada. El proceso para adicionar campos consta de abrir la Tabla de Atributos y entrar a **Table Option – Add Field**, allí se diligencia el nombre del nuevo atributo y el tipo de dato que se cargaría en este.

El ambiente es de todos

Instituto

		м						
Table Of Contents	4	*						
🏡 📮 😓 🦊 🖽 👘	_	1					_	- 1
	Table							×
E B Layers	1							
CCob2016v1_								
	M	Find and Replace						×
		Select By Attributes	COBERTURA	Tipo	CATEGORIA	VALOR	AREA ha	\wedge
		Sectory Francisco	ano continuo	Transformado	5	100	144,174693	
	M	Clear Selection	ano continuo	Transformado	5	100	72,695791	- 1
	5	Switch Selection	ano discontinuo	Transformado	5	100	42,150676	
	1.1	Sincer Selection	ano discontinuo	Transformado	5	100	6,144733	
		Select All	ano discontinuo	Transformado	5	100	25,761065	
			ano discontinuo	Transformado	5	100	38,893506	
		Add Field	ano discontinuo	Transformado	5	100	8,027036	
	=	Turn All Fields	oun discontinuo	Transformado	5	100	48,447218	
		Add Field	huo	Transformado	5	100	10,494111	
	✓	Show Field Alia	huo	Transformado	5	100	13,831056	
		Adds a new field t	o the table. huo	Transformado	5	100	8,129213	
		Arrange Tables		Transformado	5	100	54,924315	
		Restore Default Column Widths	tos	Transformado	5	100	23,64473	
		Restore benant column maths	tos	Transformado	5	100	43,533713	
		Restore Default Field Order	tos	Transformado	5	100	23,854477	
			tos	Transformado	5	100	24,621728	
		Joins and Relates	• los	Transformado	5	100	29,863426	
		Related Tables	tos	Transformado	5	100	30,563119	
			pios	Transformado	5	90	37,754803	
	dia.	Create Graph	ipios	Transformado	5	90	27,524138	
	_	Add Table to Lawrent	pios	Transformado	5	90	34,615363	
		Add Table to Layout	ipios	Transformado	5	90	39,887145	
	2	Reload Cache	pios	Transformado	5	90	32,528336	\mathbf{v}
	~	heloud cucie	ninn	Transformado	· · · · ·	001	20 440004	
	A	Print					,	
		D	t of 67690 Selected)					
	1	Reports						

Teniendo en cuenta el proceso de Adición de Atributos en la capa CCob2016v1 usada en la generación del índice de Fragmentación, posteriormente se procede a transformar las capas Vectoriales en Raster mediante el atributo "Tipo" el cual consta de dos únicos valores (Natural y Transformado) para cada una de las capas. Para hacer este proceso se debe utilizar la herramienta "**Polygon to Raster**" que se encuentra en el **Toolbox – Conversion Tools – To Raster – Polygon to Raster**, ingresando como parámetro de creación el atributo "Tipo" y con tamaño de celda de 30 metros. Para este caso el proceso se desarrolla en Batch.

🔨 Polyg	gon to Raster					-		Х
								^
	Input Features	Value field	Output Raster Dataset	Cell assignment type	Priority field	Cellsize		
1	CCob2016v1_Class	Tipo	D:\FREELANCE\PATRIMONIO NATURAL\PROCESOS\RASTER\CCob201	CELL_CENTER	NONE	30	+	() (
2	CCob2012v2_Class	Tipo	D:\FREELANCE\PATRIMONIO NATURAL\PROCESOS\RASTER\CCob201	CELL_CENTER	NONE	30	_	-
3	CCob2007v4_Class	Tipo	D:\FREELANCE\PATRIMONIO NATURAL\PROCESOS\RASTER\CCob200	CELL_CENTER	NONE	30	×	
							1	
							Ŧ	
							Ø	
								-
				[OK Cancel	Environments	Show Help	·>>
			WANT IT	ar was a set ours and	Sec. 1. 1981			

Como resultado de este proceso se genera una capa Raster para cada una de las capas geográficas de coberturas con dos valores (Natural y Transformado).

Teniendo las capas clasificadas en Natural y Transofmrado para los 3 periodos de tiempo, se procede a analizar la dinámica de cambio. Para este procedimiento se opta por trabajar con el software WGIS que tiene un Plugin llamado **Semiautomatic Classification Plugin – SCP.** En esta herramienta se ingresan las dos capas a analizar teniendo en cuenta cuál va a ser el periodo de referencia y cuál el cambio presentado.

Inicialmente se analiza el periodo 2007 – 2012 así:

				Código:	FP-CCOB-4	
inchi	FORMATO.	PROTOCOLO			Versión: 1.0	
mi-Automatic Classification Plugin Decrema de Indonese 🍂 Herranentas 🌒 prenorosamentes 🕞 Pie	- C X	Semi-Automatic Classification Plugin	Brancosamianta	Protocoreaniento Di Cuin dodi		
Frecisión Reporte de la desificación	Cross deserfication	Precisión Cambio de cobertura del suelo Entrado Salida	Reporte de la clasificac	ción Cross dassification	Clasificación a vectorial	
Seleccona la clasificación de referencia CCob2007/4_301 Seleccona la nueva clasificación CCob2012/2_301 X Reportar pixelles sin cambios	- 0	ChangeCode ReferenceClass 1 1.0 2 1.0 3 2.0 4 2.0	NewClass 1.0 2.0 1.0 2.0	PixelSum 51947068 892784 6207199 479406596		
Ejecular						
alda						

Se obtienen 4 posibles opciones de cambio (Natural – Natural, Natural-Transformado, Transformado-Natural y Transformado-Transformado). Para este caso, y con la intención de facilitar los cálculos siguientes cada opción se clasifica en 1, 2, 3 y 4.

Para el periodo 2012 – 2016 se procede de la misma manera:

Semi-Automatic Classification Plugin			- 🗆 🗙	Semi-Automa	tic Classification Plugin				– 🗆 🗙
🖶 Descarga de Imágenes 🛛 👬 Herramientas	Preprocesamiento Postprocesamiento	📔 Calculadora de Bandas 🛛 👹 Jueg	o de bandas 🛛 📢 🕨	👆 Descarga de	Imágenes 👬 Herramientas	Preprocesamiento	ostprocesamiento 🔛 Calcular	dora de Bandas 🛛 🝯 Jueg	o de bandas 🛛 📢 🕨
👫 Precisión 🛛 🔀 Cambio de cobertura del sue	io 🔚 Reporte de la clasificación 🔤 Cross da	assification 뵭 Clasificación a vectorial	🔐 Reclasifi 4 🕨	Precisión	Cambio de cobertura del suel	o Reporte de la clasificación	n 🔚 Cross dassification	Clasificación a vectorial	🔐 Reclasife 4 🕨
Entrada				Entrada					
Falantan la datémité de reference	(CO4/2012)/2 201			Salida					
Selectora la rueva dasficación Eselectora la nueva dasficación X Reportur poveles en cambos Esecutar	CC0890196v1_301			ChargeCod	e ReferenceClas	NewCass 10 20 20 20 20	Peedon 44001034 1400003 400003 400003 400004 400004 400004 400004 400004 400004 400004 400004 400004 4000004 4000000		

También se obtienen 4 posibles opciones de cambio (Natural – Natural, Natural-Transformado, Transformado-Natural y Transformado-Transformado). Para este caso, y con la intención de facilitar los cálculos siguientes cada opción se clasifica en 10, 20, 30 y 40.

Obteniendo las dos capas resultantes asociadas a las dinámicas de cambio de las coberturas de la tierra, se procede a sumar las capas resultantes y a reclasificar de acuerdo a la lógica de cambio en los valores de la tabla siguiente:

Tabla. Clasificación de los valores de resistencia Dinámica Cambio Cobertura

	CLASIFICACIÓN VALORES MATRIZ DINÁMICA DE CAMBIO DE LAS COBERTURAS									
	Periodo 1			Periodo 2		Sumatoria de Valores	TIPO DE PROCESO	VALOR FINAL		
2007	2012	VALOR	2012	2016	VALOR	TOTAL		WATRIZ		
Natural	Natural	1	Natural	Natural	10	11	Sin cambio	1		
Transformado	Natural	2	Natural	Natural	10	12	Recuperación vieja data	1		
Natural	Transformado	3	Natural	Natural	10	13	N/A	N/A		
Transformado	Transformado	4	Natural	Natural	10	14	N/A	N/A		
Natural	Natural	1	Transformado	Natural	20	21	N/A	N/A		
Transformado	Natural	2	Transformado	Natural	20	22	N/A	N/A		
Natural	Transformado	3	Transformado	Natural	20	23	Recuperación Reciente	3		
Transformado	Transformado	4	Transformado	Natural	20	24	Recuperación Reciente	3		
Natural	Natural	1	Natural	Transformado	30	31	Transformación Reciente	5		
Transformado	Natural	2	Natural	Transformado	30	32	Transformación Reciente	5		
Natural	Transformado	3	Natural	Transformado	30	33	N/A	N/A		
Transformado	Transformado	4	Natural	Transformado	30	34	N/A	N/A		
Natural	Natural	1	Transformado	Transformado	40	41	N/A	N/A		
Transformado	Natural	2	Transformado	Transformado	40	42	N/A	N/A		
Natural	Transformado	3	Transformado	Transformado	40	43	Transformado vieja data	5		
Transformado	Transformado	4	Transformado	Transformado	40	44	Transformado vieja data	5		

De esta manera, se reclasifican los resultados usando la herramienta Reclassify que se encuentra en **Spatial Analyst Tools – Reclass – Reclassify**.

Input raster								~
Sum0712_1	216.tif		_			-	2	
Reclass field								
Value							\sim	
Reclassificatio	on							
	d values 11 12 23 24 31 32 43 44	New values 1 1 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	^ ~	Classify Unique Add Entry Delete Entries				
Load	Save	Reverse New Value	es	Precision				
Output raster F:\FREELAN	r ICE\PATRIMONIO_ nissing values to No	NATURAL \GEF5_Corredores	s\6 !	SIG\6 Geodata\Raster\CDtc2	018v1.tif		2	,

El resultado de este proceso se denomina variable de dinámica de transformación de coberturas CDtc.

Para la generación del Factor de Vulnerabilidad es necesario procesar información relacionada a la vocación del suelo y las pendientes presentes en el territorio. Obteniendo dichas matrices de variables se procede a generar la suma de sus valores y finalmente general el Factor deseado (Fvul)

A continuación se describen los procedimientos para generar las matrices CVco y CRpe.

4.1.8 Variable Vocación de los Suelos - VS (CVco)

Los insumos necesarios para el procesamiento son:

2. Capa de Vocación del Suelo del IGAC (ag_100k_vocacion_uso_2017_magna_AMZtt)

Con la información anterior se procede a desarrollar el procedimiento descrito en el flujograma a continuación:

Inicialmente se deben agregar 3 campos (Tipo, Categoría y Valor) Teniendo como referencia la Tabla 3.

νοςλοιόνι	RES	ISTENCIA
VOCACIÓN	VALOR	CATEGORÍA
Cuerpo de agua	1	1
Conservación de suelos	1	1
Forestal	40	3
Agroforestal	50	3
Agrícola	60	3
Ganadería	80	5
Zonas urbanas	100	5

Tabla. Clasificación de los valores de resistencia de acuerdo a la vocación de uso de los suelos

Posterior a la adición de nuevos campos en los atributos de la capa de vocación del suelo, se procede a transformar la capa Vectorial en Raster mediante el atributo "Categoría". Para hacer este proceso se debe utilizar la herramienta "**Polygon to Raster**" que se encuentra en el **Toolbox – Conversion Tools – To Raster – Polygon to Raster**, ingresando como parámetro de creación el atributo "Categoría" y con tamaño de celda de 30 metros.

Flambiente	ΕΩΡΜΔΤΟ: ΡΡΩΤΟΟΟΙ Ο	Código: FP-CCOB-4
Instituto amazonico de SINCHI		Versión: 1.0
Pol Input ag_ Value Cate Outpu F:Y Cell a CCLI Priorit NO Cellsi Jo	ygon to Raster – –	

Como resultado de este proceso se genera una capa Raster de Categoría de Vulnerabilidad de Uso del Suelo con los valores 1, 3 y 5 que se denominará "Vocación de los Suelos" **CVco2018**.

4.1.9 Variable de Resistencia Pendiente - P (CRpe)

Los insumos necesarios para el procesamiento son:

- 5. DEM Colombia 30 metros
- 6. Límite Área de estudio Regional SINCHI (DLim)

Con la información anterior se procede a desarrollar el procedimiento descrito en el flujograma a continuación:

Inicialmente es necesario recortar el DEM con resolución de 30 metros al área de estudio regional. Este paso se hace mediante la herramienta Extract by Mask que se encuentra en **Spatial Analyst Tools – Extraction – Extract by mask.**

🔨 Extract by Mask	-		×
Input raster			
dem_colombia_magna_30m.img		•	6
Input raster or feature mask data			
DLIM2014		-	6
Output raster			
F:\FREELANCE\PATRIMONIO_NATURAL\GEF5_Corredores\6 SIG\6 Geodata\Raster\CDtm20	18v1.tif		6
OK Cancel Environments	i	Show H	elp >>

Teniendo el resultado del proceso anterior (CDtm2018), se procede a generar la superficie de Pendientes mediante la herramienta Slope que se encuentra **3D Analyst Tools – Raster Surface – Slope**, teniendo en cuenta el parámetro Percentage Rise.

Versión: 1.0			Código: FP-CCOB-4						
Slope Input raster CDtm2018v1.tif Output raster F:\FREELANCE\PATRIMONIO_NATURAL\GEF5_Corredores\6 SIG\6 Geodata\Raster\SupContVariablesMR\; Output measurement (optional) DEGREE Output measurement (optional) DEGREE Z factor (optional) Include Include Include <td>Instituto amazonico de SINCHI</td> <td colspan="8">es de todos Minambiente FORIVIATO. PROTOCOLO</td>	Instituto amazonico de SINCHI	es de todos Minambiente FORIVIATO. PROTOCOLO							
	Slop Input CDtr Outpu F: Fi Outpu DEG Metho PLAN Z fact Z unit METh	pe							

La superficie generada se encuentra entre los valores de 0 a 90 por lo que se deben reclasificar mediante la herramienta Reclassify ubicada en la ruta **Spatial Analyst Tools – Reclass – Reclassify**. se procede a clasificar en 3 rangos de acuerdo a los Intervalos Geométricos de la información

				1724-1127-
Layer Properties		Classification		×
General Source Key M	Metadata Extent Display Symbology Tim	Classification	Classification Statistics	
Show: Vector Field Unique Values Classified Stretched Discrete Color	Draw raster grouping values into class Fields Value Classification	Method: Geometrical Interval Classes: 3 Data Exclusion Exclusion Sampling	Count: Minimum: Maximum: Sum: Mean: Standard Deviation:	538253108 0 89,12359619 2 538 846 637 4,716826711 5,588289583
	Color Ramp Symbol Range 0 - 2,826533865 2,826533865 - 17,09507466 17,09507466 - 89,12359619	Columns: 100 € Show Std. Dev. Show Mean	89,12359619	Break Values % 2,826535865 17,09507466 89,12359619
About symbology	Show class breaks using cell values	4.0e+07 2.0e+07		
		0 22,28089905 44,5617981 66,84269 Snap breaks to data values	714 89,1235961!	OK Cancel

A cada clase generada se procede a reasignar los valores de 1, 3 y 5, en donde 1 corresponde a las pendientes menos pronunciadas, 3 corresponde a pendientes intermedias y 5 a pendientes fuertes, este proceso se hace mediante la herramienta Reclassify que se encuentra en **Spatial Analyst Tools** – **Reclass – Reclassify**.

El ambiente		Código: FP-CCOB-4
Institute amazonico de SINCHI	TORMATO, PROTOCOLO	Versión: 1.0
	Reclassify - X Input raster CPen2018/1.tif Image: CPen2018/1.tif CPen2018/1.tif Image: CPen2018/1.tif Image: CPen2018/1.tif Reclassification Image: CPen2018/1.tif Image: CPen2018/1.tif Cold Values Image: CPen2018/1.tif Image: CPen2018/1.tif Cold Values Image: CPen2018/1.tif Image: CPen2018/1.tif Load Save Reverse New Values Precision Output raster Image: CPen2018/1.tif Image: CPen2018/1.tif Image: CPen2018/1.tif Change missing values to NoData (optional) Image: CPen2018/1.tif Image: CPen2018/1.tif Image: CPen2018/1.tif	

El resultado de este proceso se denomina variable de Resistencia a la Pendiente nombrada CRpe.

OK Cancel Environments... Show Help >>

Para la generación del Factor de Pérdida y Fragmentación de Hábitats es necesario procesar información relacionada a las métricas de hábitats de las especies analizadas. Obteniendo dichas matrices de variables se procede a generar la suma de sus valores y finalmente general el Factor deseado (Ffrag)

Para la generación del Factor de Fragmentación de Hábitat es necesario procesar información relacionada a la distribución de especies en el área de estudio. Obteniendo dichas matrices de variables se procede a generar la suma de sus valores y finalmente general el Factor deseado (Ffrag)

Aunque para la implementación de la metodología en el ámbito regional no se pudo procesar la información debido a la deficiencia de información de registro de especies y a la mala distribución

espacial de las muestras encontradas en las bases de datos; a continuación, se describen los procedimientos para generar las matrices CAhr, CPht y Clet de manera esquemática.

4.1.10 Variable de Aislamiento de Hábitat Remanente - AHR (CAhr)

El procedimiento para la generación de la variable de aislamiento de hábitat remanente se presenta a continuación:

El primer paso consiste en hacer la validación de los registros de especies conseguidos, dicho procedimiento se genera en MaxEnt teniendo en cuenta variables climáticas que determinan la viabilidad de las áreas de trabajo y por otra parte asociar variables que explican la probabilidad de existencia o no de las diferentes especies.

Se procede a cortar las variables climáticas (BIOCLIM) una a una al límite SINCHI con la herramienta **Spatial Analyst Tools – Extraction – Extract by mask**,

D: FREELANCE PATRIMONIO NATURAL INSUMOS BLIOCLIM wc2.0_30s_bio w			
	c2.0_bio_30s_01.tif		2
input raster or feature mask data			
D: \FREELANCE \PATRIMONIO NATURAL \INSUMOS \GEOGRAFICO \Limite Amazor	nia\DLIM2014.shp		2
Dutput raster			
D: \FREELANCE \PATRIMONIO NATURAL \INSUMOS \BLIOCLIM \wc2.0_30s_bio \C	ORTES\Sinchiwc2.0_bio_3)s_01.tif	2

A su vez se adicionan las variables de Pendiente (CPen2018) como continua y Coberturas (CCob2016) como categórica en el Maxent para generar los mapas de probabilidad.

NOTA: SE debe parametrizar el MaxEnt en el décimo percentil.

Maximum Entropy Species Distribution Mod	deling, Version 3.4.1			- 🗆 X	l - Word
Samples File_Registros_Ordenes_Amz_CobNat.csv	Browse	Directory/File CLIM/wc2	Environmental layer	s NProjectPI Browse	er?
✓ Artiodactyla		🔬 Abrir			×
✓ Carnivora		Buscaren: COF	RTES	Sinchiwc2.0 bio 3	0s 01Pr.tif.aux.xml
✓ Cingulata		Sinchiwc2.0_bio	_30s_01.tif _30s_01.tif.aux.xml	Sinchiwc2.0_bio_3	0s_01Pr.tif.ovr is s 0s_01Pr.tif.xml is s
☑ Didelphimorphia		Sinchiwc2.0_bio	_30s_01.tif.ovr _30s_01Pr.tfw	Sinchiwc2.0_bio_3	0s_02.tif S 0s_02.tif.aux.xml S
✓ Primates		Sinchiwc2.0_bio	_30s_01Pr.tif	Sinchiwc2.0_bio_3	0s_02.tif.ovr
✓ Rodentia		<u>N</u> ombre de archivo: Archivos de <u>ti</u> po:	IO NATURALINSU	MOS\BLIOCLIM\wc2.0_30	s_bio\CORTES\ProjectPl
Linear features					Abrir Cancelar
Product features		Do ja	ckknife to measure Output	variable importance	
☐ Threshold features	Output directory		Output f	ile type asc 💌 Browse	PHT (CPht)
V Auto features	Projection layers	directory/file	1	Browse	
Kun		setungs		нер	

Posterior a la corrida de MaxEnt, se selecciona el Orden Rodentia al ser el que mejores características estadísticas tiene. Sin embargo, se debe tener en cuenta que la distribución de puntos de registro de especies no es del todo aleatoria o significativa. Al tener el mapa de probabilidad de MaxEnt en el décimo percentil, se procede a exportar la capa Raster a polígono mediante la herramienta – **Conversion Tools – To Raster – Raster to Polygon** creando la capa de hábitat Rodentia (CCha2018_Rodentia), posteriormente, se procede a seleccionar las coberturas que cruzan con los hábitats probables para Rodentia y así seleccionar aquellas coberturas que serían los hábitats de este orden. La herramienta usada para este cruce de información es **Select by Localization**. Al resultado del cruce de capa de coberturas con la probabilidad de Rodentia en el décimo percentil se corre la herramienta **Spatial analyst Tools – Distance – Euclidean Distance**,

Euclidean Distance	-		>
Input raster or feature source data			
CCha2018v1_Rodentia		-	2
Dutput distance raster			
F:\FREELANCE\PATRIMONIO_NATURAL\GEF5_Corredores\6 SIG\6 Geodata\Raster\CAhr2018v1_Pre.tif			6
Maximum distance (optional)			_
Dutput cell size (optional)			_
30			2
Output direction raster (optional)			
			6
OK Cancel Environments		Show H	elo >>

Instituto	Ø	El ambiente es de todos	
SINCHI			

Al tener la capa de Distancia Euclidiana, se hace un corte al límite SINCHI (DLim2014) mediante la herramienta **Spatial Analyst Tools – Extraction – Extract by mask.**

🔨 Extract by Mask	-			×
Input raster				
CAhr2018v1_Pre		•	6	
Input raster or feature mask data				
DLIM2014		-	6	
Output raster			_	
F:\FREELANCE\PATRIMONIO_NATURAL\GEF5_Corredores\6 SIG\6 Geodata\Raster\CAhr2018v1.tif			eð	
				~
OK Cancel Environment	s	Show H	ielp >>	•

El resultado de esta extracción es la capa **CAhr2018v1** denominada Variable de Aislamiento de Hábitat Remanente.

4.1.11 Variable de Porcentaje de Hábitat Transformado - PHT (CPht)

El procedimiento para la generación de la variable de porcentaje de hábitat transformado se presenta a continuación:

El primer paso consiste en hacer una grilla utilizando la herramienta "Generate Tessellation" que se encuentra en **Data Management Tools – Sampling – Generate Tessellation**. Se debe tener en cuenta que el Extent de las teselas serán teniendo en cuenta el Límite SINCHI (DLim2014) y el tamaño de la tesela es el área de un cuadrado de 500 m (500m X 500m = 250.000 m2), este resultado se nombra **CCua2018v1_500m.shp.**

Output Feature Class						1
D:\Documents\ArcGIS\Default.gdb\GenerateT	essellation2				6	
Extent						
Same as layer DLIM2014				~	6	
	Тор					
	4,948186					
Left			Right			
-77,670617	Detter		-66,	847215		
	-4 225780					
	1,220100					
Shape Type (optional)						
SQUARE					~	
Size (optional)		broood	C			
Costial Deference (eptional)		£30000	Square Met	ers	~	
ccc ctb.cac					-	
GC5_SIRGAS						
						I.
						Ľ

Posterior a este paso, se procede a cruzar la grilla generada con la capa de hábitat del orden Rodentia mediante la herramienta **Analysis Tools – Overlay – Identity** que sirve para generar una capa de área de hábitat y no hábitat por cada tesela creada en la grilla, esta capa será llamada CCua2018_Cha2018_Rodentia.

input Features						
CCua2018v1_500m					1 🖻	
Identity Features						
CCha2018v1_Rodentia] 🖻	
Output Feature Class						
D:\Documents\ArcGIS\CCua_CCha2018_Rc	odentia.shp				6	
JoinAttributes (optional)						
ALL					~	
(Y Tolerance (optional)						
			Decimal dec	TABLE	~	
Keep relationships (optional)			Decinior deg	, ccs		
Keep relationships (optional)			Decinici deş	,		
Keep relationships (optional)			Decinici des			
Keep relationships (optional)			Decinition			
∏ Keep relationships (optional)						
☐ Keep relationships (optional)			Decinition			
☐ Keep relationships (optional)						
☐ Keep relationships (optional)						
☐ Keep relationships (optional)			preamor deg			

la validación de los registros de especies conseguidos, dicho procedimiento se genera en MaxEnt teniendo en cuenta variables climáticas que determinan la viabilidad de las áreas de trabajo y por otra parte asociar variables que explican la probabilidad de existencia o no de las diferentes especies.

AN AN			
Instituto	Û	El ambiente es de todos	
SINCHI			

Se procede a cortar las variables climáticas (BIOCLIM) una a una al límite SINCHI con la herramienta **Spatial Analyst Tools – Extraction – Extract by mask**,

Extract by Mask	- 0		×
nput raster			,
D:\FREELANCE\PATRIMONIO NATURAL\INSUMOS\BLIOCLIM\wc2.0_30s_bio\wc2.0_bio_30s_01.tif		6	
nput raster or feature mask data			
D: \FREELANCE \PATRIMONIO NATURAL \INSUMOS \GEOGRAFICO \Limite Amazonia \DLIM2014.shp		2	
Dutput raster			
D: FREELANCE PATRIMONIO NATURAL INSUMOS BLIOCLIM (wc2.0_30s_bio) CORTES (Sinchiwc2.0_bio_30s_	01.tif	6	
		-	
OK Concel Environmente	Chow	tolo >>	-
OK Cancel Environments	Showr	icih >>	1

A la capa resultante se le calculan las áreas de cada polígono generado, se agrega un unevo campo de porcentaje y se calcula dicho porcentaje teniendo en cuenta que el tamaño de cada Tesela o cuadricula es de 250.000 metros cuadrados.

Teniendo estos valores en la tabla de atributos se procede a exportarla como DBF y a generar en Excel o una hoja de cálculo una tabla dinámica que permita sumar los valores de los porcentajes por cada ID de la grilla o cuadricula generada. Al tener esta tabla dinámica se procede a hacer un **Join Data** a la capa de Cuadricula a 500 metros creada.

		Código: FP-CCOB-4
Instituto mazoneo de SINCHI	FURIMATU. PRUTUCULU	Versión: 1.0
	Join Data X Join lets you append additional data to this layer's statubute table so you can, for example, synobiotic the layer's flattacture using this data. What do you want to join to this layer' What do you want to join to this layer' The interface of the layer' The interface of the layer' Ion attributes from a table Image: table of the layer' Image: table of the layer' Ion attributes from a table Image: table of the layer of load the table from data Image: table table to join to this layer, or load the table from data Image: table table to join to this layer, or load the table from data Image: Claused 1bv1_500m Image: Claused 1bv1_500m Image: Claused 1bv1_500m Image: Claused 1bv1_500m Image: Claused 1bv1_500m Image: Claused 1bv1_500m Image: Claused 1bv1_500m Image: Claused 1bv1_500m Image: Claused 1bv1_500m Image: Clause the field in the table to base the join on: Image: Claused 1bv1_500m Image: Claused 1bv1_500m Image: Clause table tables tables are shown in the resulting table. Image: Claused 1bv1_500m Image: Claused 1bv1_500m Image: Clause table tables the layer table from the join table. Image: Clause tables tables to an into the layer table. Image: Clause tables tables tables tables tables tables tables tables. Image: Clause tables tables tables tables tables tables tables tabl	

Teniendo la capa con los nuevos datos de porcentaje por cada ID_GRID, se procede a exportarlo a un *shapefile* denominado CPht2018v1 mediante la herramienta **Data – Export Data**.

Export Data X	Saving Data X
Export: All features 🗸	Look in: 🔚 1 Temático - 🗸 🏠 🗔 🏥 🗸 😫 🔂 🇊 🚳
Use the same coordinate system as: this layer's source data the data frame the feature dataset you export the data into (only applies if you export to a feature dataset in a geodatabase) Output feature dass: F:\FREELANCE\PATRIMONIO_NATURAL\GEF5_Corredores\6 SIG¹ 	Name Type Area Interés Folder Folder Folder Campo Folder Cruces Folder Físico Folder Social Folder
OK Cancel	Name: CPht2018v1.shp Save Save as type: Shapefile Cancel

Al tener la capa CPht2018v1 en formato vector, se procede a exportarlo a Raster mediante la herramienta **Conversion Tools – To Raster – Polygon to Raster**, para así tener la capa final de la variable de porcentaje de hábitat transformado **CPht2018v1**.

🔨 Polygon to Raster	-		×
Input Features			
CPht2018v1		•	2
Value field			
Porcentaje			\sim
Output Raster Dataset			_
F: \FREELANCE \PATRIMONIO_NATURAL \GEF5_Corredores \6 SIG \6 Geodata \Raster \CPht2018v1.tif			6
Cell assignment type (optional)			
CELL_CENTER			\sim
Priority field (optional)			_
NONE			\sim
Cellsize (optional)			
30		_	

Versión: 1.0

4.1.12 Variable de Índice de la Transformación de Hábitats - IET (Clet)

El procedimiento para la generación de la variable de índice de la transformación de hábitats se presenta a continuación:

El primer paso consiste rasterizar los polígonos de hábitat del Orden Rodentia exportándolo a Raster mediante la herramienta **Conversion Tools – To Raster – Polygon to Raster**, teniendo como parámetro el FID de los polígonos.

Polygon to Raster	-		×
input Features			
CCha2018v1_Rodentia		-	2
/alue field			
FID			\sim
Dutput Raster Dataset			
F:\FREELANCE\PATRIMONIO_NATURAL\GEF5_Corredores\6 SIG\6 Geodata\Raster\CCha2018v1_Rode	ntia .tif		2
Cell assignment type (optional)			
CELL_CENTER			\sim
Priority field (optional)			
NONE			\sim
Cellsize (optional)			_
þo			2
		-	
OK Cancel Environmen	S	Show He	ip >>

Posterior a este paso, se procede a exportar la tabla de atributos de la capa resultante y editarla teniendo en cuenta los siguientes parámetros: (FID, Hábitat/No Hábitat, True, False) con el fin de que cada polígono tenga un atributo de entrada al software Fragstats.

Posterior a la edición de la tabla de atributos, se procede a unirla nuevamente con la capa de hábitat de Rodentia y generar la superficie CCha2018v1_RodentiaTable.

En el software Fragstats, se carga la capa generada en el paso anterior y se parametriza teniendo en cuenta que la medición que se quiere hacer corresponde a los parches (**Patch Metrics**) y a la métrica llamada **Radio de Giro (Gyrate)**.

64 uppamed					- 0	×
File Analyziz Help					5	,,,
New Open Save Save as Run						
Input layers Analysis parameters		Area - Edge Shape Core area Con	itrast Aggregation			
Batch management		Select all	De-select	al	Invert se	ection
Layers File type : GeoTIFF grid (Patch metrics		Class-Level Deviatio	ins	Landscape-Level	Deviation
F:VFREELANCE/PATRIMONEO_NAT Row count : 33973 Column count : 40260			Standard Deviation (CSD)	Percentile (CPS)	Standard Deviation (LSD)	Pero (LPS)
Cell size : 30.00	_	Patch Area (AREA)				C
Background value : 999	Class metrics	Patch Perimeter (PERIM)				E
Band : 1		Radius of Gyration (GYRATE)				E
No data value : 127						
Add layer	Landscape metrics					
Edit layer info						
Remove layer		<				>
Demons all laures	Activity log					
Remove an ayers	Welcome to Frags 01/15/19 22:24:4	tats v4.2.1 ! 8: Categorical analysis session started.				^
Export batch	01/15/19 22:25:0	4: Warning: Units not specified, meters as:	aumed.			
Import batch						
Common tables						
>						~
Create a new file						A

Con los resultados estadísticos generados por Fragstats se procede a hacer un Join con la capa CCha2018v1_Rodentia, generando la capa intermedia CCha2018v1_RodentiaGyrate.shp.

Con esta capa se procede a rasterizar mediante la herramienta **Conversion Tools – To Raster – Polygon to Raster**, teniendo como parámetro el Gyrate recién cargado y así finalmente generar la capa **Clet2018v1**.

Polygon to Raster	_			-		:	×
Input Features							2
CCha2018v1_RodentiaGyrate					-	e3	
Value field							
Gyrate						\sim	
Output Raster Dataset						_	
F: \FREELANCE \PATRIMONIO_NATURAL \GEF5_Corredon	es\6 SIG\6 Geodi	ata\Raster\CIet	2018v1.tif			e	
Cell assignment type (optional)							
CELL_CENTER						\sim	
Priority field (optional)							
NONE						\sim	
Cellsize (optional)							
30						2	

Obteniendo todos los Factores del Índice Espacial de Huella Humana (a excepción del Ffrag que no se ejecutó para la implementación en el ámbito regional), se procede a calcular los valores finales y así generar la Matriz General de Resistencia que será el insumo vital para determinar las franjas de conectividad ecológica en la región de estudio.

En el desarrollo de la implementación de la presente metodología no fue posible desarrollar el Factor de perdida y fragmentación de hábitats por lo que el flujograma a continuación representa el análisis de conectividad estructural logrado en la implementación.

El procedimiento operativo para desarrollar la ecuación consta de utilizar la Calculadora Raster ubicada en la Ruta **Spatial Analyst Tools – Map Algebra – Raster Calculator** .

Layers and variables Conditional	1ap Algebra expression											^
← CFime2018V1.tif 7 ← CFime2018V1.tif 7 9 /	Layers and variables								Condition	al —	^	
CFvul2018v1.tlf 4 5 6 • > = 1 SetMull 1 2 - < < = ^	CFint2018v1.tif	7	8	9	1	==	!=	&	Con Pick			
1 2 3 - <=	CFvul2018v1.tif	4	5	6		>	>=	1	SetNull			
0 + () ~ Exp ~ (("CFint2018v1.bf" + "CFtue2018v1.bf" + "CFvul2018v1.bf")*100)/45		1	2	2	-	<	<=	~	Math			
(("CFint2018v1.tlf" + "CFtme2018v1.tlf" + "CFvul2018v1.tlf")*100)/45		-	2						A			
F: \FREELANCE \PATRIMONIO_NATURAL\GEF5_Corredores \6 SIG \6 Geodata\Raster \CMgr2018v1.tif	(("CFint2018v1.tif" + "CFtime20	1 18v1.tif" + "CFv	2) /ul2018	Bv1.tif	+	()/45)	~	Abs Exp Even10		~	
	(("CFint2018v1.tif" + "CFtime20	118v1.tif" + "CFv	2) /ul2018	Bv1.tif	+	()/45)	~	Abs Exp Evm 10		•	
	(("CFint2018v1.ttf" + "CFttme20 2utput raster F:\FREELANCE\PATRIMONIO_N	118v1.tif" + "CFv	vul2018	Bv 1. tif	+ ")*100 SIG\6	()/45 Geoda) ta\Ras	~ ter\CM	Abs Exp Even 10		×	
	(("CFint2018v1.tbf" + "CFtime20 Xutput raster F:\FREELANCE\PATRIMONIO_N	118v1.ttf" + "CFv	vul2018	Bv 1. tif	+ ")*100 SIG\6	()/45 Geoda) ta\Ras	~ ter\CM	Abs Exp Even 10		~	

El resultado del proceso de Algebra de Mapas es la Matriz General de Resistencia para el análisis de conectividad estructural de la región Amazonia.

4.2. Modelación de Áreas Núcleo

Dentro de la metodología desarrollada, se propone asociar los Resguardos Indígenas y las Áreas Protegidas en aquellas zonas con Coberturas Naturales que permitan el mantenimiento de poblaciones silvestres saludables y desde las cuales se puedan intercambiar individuos incrementando la variabilidad genética y la funcionalidad ecológica regional. Esta unión de capas permite tener unas áreas focalizadas preliminares que funcionarían como zonas desde las cuales los organismos pueden intercambiar energía incrementando la variabilidad genética y la funcionalidad ecológica regional. Operativamente este desarrollo se muestra en el flujograma a continuación:

Los insumos necesarios para desarrollar el flujo de trabajo para la generación de áreas núcleo son:

- 1. Límite Área de estudio Regional SINCHI (DLim)
- 2. Capa de Coberturas del Suelo año 2016 (CCob2016v1)
- 3. Capa de Áreas Protegidas (Runap)
- 4. Capa de Resguardos Indígenas (SINCHI)
- 5. Ampliación Chiribiquete (PNN)

Como paso inicial se toma la capa reclasificada de Coberturas de la tierra (CCob2016v1_Class) teniendo en cuenta el atributo Tipo se seleccionan únicamente los polígonos de Tipo Natural, de esta manera se crea la primera capa del análisis. Este proceso se hace desde la **Tabla de Atributos – Select by Attributes – (Tipo = "Natural")**, posteriormente se genera una capa denominada CCob2016v1_Class_Nat.shp.

Method	: 0	Create a nev	v selection		~
"FID" "CODI "COBE "ARE/ "Tipo"	GO" RTUF	1A"			· ·
= < _ % % SELECT "Tipo"	<> < = () In * FRC	Like And Or Not Null MCCob200 ral*	"Natural" "Transformac Get Unique 16v1_Class <u>W</u>	lo' <u>Values</u> <u>G</u> o To: HERE:	
Cl <u>e</u> a	r	Verify	Help	Loa <u>d</u>	∨ Sa <u>v</u> e

Paralelamente se debe hacer un corte de las capas de Reglamentación Especial (Áreas Protegidas y Resguardos Indígenas) al límite de la zona de estudio regional (Límite SINCHI) usando la herramienta Clip que se encuentra en **Analysis Tools – Extract – Clip**.

- Clip — D		×	⊾ Clip		-		>	<
Input Features Runap] 🔗	^	Input Features CRei2016v1			-	2	^
Clip Features DLIM2014	1 🖻		Clip Features DLIM2014			•	2	
Output Feature Class D: \FREELANCE \PATRIMONIO NATURAL \PROCESOS\\SHP\Runap_SINCHI .shp	2		Output Feature Class D: \FREELANCE \PATRIMONIO NATUR	RAL \PROCESOS \SHP \ResgInd_SINCH	L.shp		2	
XY Tolerance (optional) Decimal degrees	~]	XY Tolerance (optional)		Decimal degrees		~	
		~						~
OK Cancel Environments Show	r Help >	·>	[OK Cancel Envi	ronments Sh	iow He	elp >>	

NOTA: La capa Ampliación Chiribiquete no se corta debido a que toda el área está contenida dentro del Límite del área de estudio regional.

Teniendo todas las capas ajustadas al límite regional se procede a unirlas en una sola capa geográfica que será denominada ÁreasNucleo_Preliminar.shp. Para este proceso se utiliza la herramienta Union que se encuentra en Analysis Tools - Overlay - Union.

🔨 Union	_		×
Input Features			~
		•	2
Features	Ranks		+
Ampliación Chiribiquete			
CCob2016v1_Class_Nat			×
Runap_SINCHI			
ResguardosIndigenas_SINCHI			•
			Ŧ
		_	-
<		>	
Output Feature Class			
D: \FREELANCE \PATRIMONIO NATURAL \PROCESOS \SHP \AreasNucleo_Preliminar.sh	P		6
JoinAttributes (optional)			
ALL			~
XY Tolerance (optional)			
Decimal	degrees		\sim
Gaps Allowed (optional)			~
OK Cancel Environments.	s	how H	elp >>

Al haber unido todas las capas en un solo shapefile, se procede a unir todos los polígonos dentro de la misma capa, esto con el fin de optimizar los tiempos de procesamiento del equipo. Este procedimiento se hace desde Edit Feature - Select All - Merge, no importa cual polígono objetivo se tome de referencia toda vez que los atributos no son importantes en este caso.

Al tener los polígonos de áreas Fuente generados, paralelamente se crea una grilla o teselación del área de trabajo ya que el Análisis Funcional del Paisaje - MSPA de Guidos no permite trabajar con áreas muy grandes o con muchos pixeles en la imagen. De este modo, se procede a exportar la capa AreasNucleo_PrelMerge.shp a una matriz usando la herramienta Conversion Tools - To Raster -Polygon to Raster.

(roj gon to haster)	×
Input Features			~
AreasNucleo_PreliMerge	-	6	
Value field		_	
Class		\sim	
Output Raster Dataset	_		
D: \FREELANCE \PATRIMONIO NATURAL \PROCESOS \RASTER \AreasNudeo_PreliMerge.tif		eð,	
Cell assignment type (optional)			
Delate full (antionel)		\sim	
NONE		\sim	
Cellsize (optional)			
ро во		1	
		-	
OK Cancel Environments S	now He	sh >>	

Teniendo la capa en formato Raster, se procede a reclasificarla sabiendo que las áreas generadas con la intersección serán el Foreground del Análisis (Valor = 1) mientras que el Background será el resto del área de estudio regional (Valor = 0) y los datos que complementan el Extent del área de estudio regional serán NoData (Valor = NoData).

🔨 Reclassify				-		×
Input raster AreasNucleo_PreliMerge Redass field Value Redassification					• 6	• •
Old values 0 1 2 NoData	New values NoData 1 0 NoData	•	Classify Unique Add Entry Delete Entries			
Load Save Output raster D: FREELANCE (PATRIMONIO Change missing values to N	Reverse New Val	lues STER V	Precision			•
	OK	Cance	el Environment	s	Show Help	>>

Para generar la Tesela se utiliza la herramienta "Generate Tessellation" que se encuentra en **Data Management Tools – Sampling – Generate Tessellation**. Se debe tener en cuenta que el Extent de las teselas serán teniendo en cuenta el Límite SINCHI (DLim2014) y el tamaño de la tesela es el área de un cuadrado de 240 Km (240 KmX240 Km = 57.600 Km2). *La misma grilla usada para generar el Índice de Fragmentación.*

Generate Tessellation		- 0	×	
Output Feature Class ATURAL \GEF5_Corredores \6 SIG \6	Geodata\Shapefiles\1 Temático\Área Interés\CCua2018v1_24	10Km .shp	e ^	-
Extent				
Same as layer DLIM2014		~	2	
	Тор			
	4,948186			
Left	Right			
-//,6/061/	Bottom	6,84/215		
	-4,225780			
Shape Type (optional)				
SQUARE			~	
Size (optional)				
	57600 Square Ki	lometers	\sim	
Spatial Reference (optional)				
MAGNA_Colombia_Bogota			C	
			~	
	OK Cancel Environments	Show H	elp >>	Ĩ

Como resultado se tienen las teselas que dividirán el área de trabajo para el procesamiento por Lotes:

Teniendo la cuadricula y la capa de Áreas Nucleo Preliminares clasificada, se procede a dividir el Raster en cada tesela para el procesamiento por Lotes en el Software GUIDOS. Para este procedimiento se procede a utilizar la herramienta "Split" que se encuentra en la ruta **Analysis Tools** – **Extract – Split**:

input r cutur co						
AreasNucleo_PreliMerge					•	2
Split Features					_	_
CCua2018v1_240Km					•	6
Split Field						
GRID_ID						\sim
Target Workspace					_	
		_	Decimara	icgrees.		
			Decinici e			

Estos Raster reclasificados y resultantes de la división son los que ingresarán al software GUIDOS y serán procesados mediante las herramientas "MSPA" y NW Components.

Estando en GUIDOS, para generar los análisis morfológicos del Paisaje (Morphological Spatial Pattern Analysis – MSPA) y los componentes por cada sección se debe cargar la información en **File – Read Image – Geotiff** y se selecciona una a una las secciones reclasificadas en NoData, 0 y 1, posterior a que se carga la imagen se va a la herramienta **Image Analysis – Pattern – Morphological – MSPA** y se corre la herramienta dando como resultado el análisis morfológico del paisaje de cada sección, se guarda haciendo **File – Save Image** y teniendo como dato de selección y almacenamiento el código de la Tesela o grilla para el posterior proceso de mosiacado.

Aunado a la ejecución del MSPA se procede a ejecutar la herramienta **Image Analysis – Network – NW Components** y se procede de igual manera con la siguiente sección.

Como se puede ver en la imagen anterior, para correr el proceso de NW Components se debe tener la imagen analizada por el MSPA, de lo contrario el software no generará ningún resultado. Dicho procedimiento se repite por cada sección y al final se procede a hacer la unión de todas las partes y se genera un nuevo Raster haciendo uso de la herramienta de ArcGIS llamada "Mosaic to New Raster" que se encuentra en **Data Management Tools – Raster – Raster Dataset – Mosaic to New Raster** dando como resultado dos resultados:

NOTA: Los parámetros usados para el MSPA son 8, 1, 1, 1.

	FORMA	Código: FP-CCOB-4		
Instituto matorico de SINCHI	FORMA	IO: PROTOCOLO	Versión: 1.0	
Mosaic To New Raster	- 0	X Mosaic To New Raster	– 🗆 X	
(u) r Kasiers (MCANE2.6, 8, 1, 1, 1, MCA (MCANE2.6, 8, 1, 1, 1, MCA (MCANE2.6, 8, 1, 1, 1, MCA (MCANE3.5, 8, 2, 1, 1, 1, MCA (MCANE3.5, 8, 1, 1, 1, MCANE3 (MCANE3.5, 1, 1, 1, MCANE3.5, 1, 1, 1, MCANE3 (MCANE3.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	ral)	Vertication Verticati	K Geodata (Kaster (MSPA_NW)	
Pixel Type (optional) 8 gtr _UNS(ONED Celare (optional) Number of Bands Mosaic Operator (optional) LAST	CK Cancel Brytroments Show Hel	Byoel Type (optional) 9 Bit Type (optional) 9 Bit Type (optional) 00 00 00 Number of Bands 10 Mosac Operator (optional) LAST 00 00	30 1 2 2 2 30 2 2 2 2 2 2 30 2 30 2 30 30 2 30 30 30 30 30 30 30 30 30 30 30 30 30	

El Análisis Morfológico del paisaje (CMspa2018v1) y las Áreas Núcleo Preliminares (CAnu2018v1_Pre).

Con el fin de ajustar las Áreas Núcleo por el tamaño de su área, se procede a convertir de Raster a Polígono mediante la herramienta **Conversion Tools – From Raster – Raster to Polygon**.

🔨 Raster to Polygon	-		>	<
Input raster				~
CAnu2018v1.tif		-	2	
Field (optional)				
Value			\sim	
Output polygon features			_	
D:\FREELANCE\PATRIMONIO NATURAL\PROCESOS\SHP\CAnu2018v1_Pre.shp			6	
Simplify polygons (optional) Create multipart features (optional) Maximum vertices per polygon feature (optional)				
OK Cancel Environments		Show H	elp >>	~

Instituto	Ø	El ambiente es de todos	
SINCHI			

Versión: 1.0

Teniendo la capa CAnu2018v1 en polígono, se procede a Adicional un campo de área y se calcula mediante la herramienta **Calculate Geometry** de la Tabla de Atributos. De acuerdo a esto, se seleccionan todas las áreas mayores a 4.000 Has correspondiente al tamaño máximo del rango de hogar del Jaguar macho en bosques húmedos.

Table		□ ×
🗄 • 🖶 • 🖫 👧	Calculate Geometry X	
AreasNucleo PreliMerg 0 Polygon 1 Polygon 2 Polygon 2 Polygon 4 Polygon 6 Polygon 6 Polygon 7 Polygon	Property: Area Coordinate System Use coordinate system of the data source: GCS: SIRGAS GUse coordinate system of the data frame: PCS: MAGNA Colombia Bogota Units: Units: Hectares [ha] Colculate selected records only About calculating geometry OK	X AREA ha Tipo FID U 0 0 464,214975 Natural 464,214975 Natural 464,214975 Natural 464,214975 Natural 464,214975 Natural
<		>
I4 4 0 >	(0 out of 8 Selected)	

Adicional a esto se agrega un campo "COD" y se nombrar de mayor a menor área (AN1, AN2, AN3, ...AN21). Por último, se convierte la capa resultante a Raster mediante la herramienta **Conversion Tools – To Raster – Polygon to Raster** teniendo en cuenta el nuevo campo "COD" como parámetro de creación.

🔨 Polygon to Raster 🛛 🗕			×
Input Features	_	-*	^
CAnu2018v1_Pre	-		
		~	
Output Raster Dataset		•	
F:\FREELANCE\PATRIMONIO NATURAL\GEF5 Corredores\6 SIG\6 Geodata\Raster\CAnu;	2018v	P ²	
CELL_CENTER		~	
Priority field (optional)			
NONE		\sim	
Cellsize (optional)		_	
β0		6	
			\sim
OK Cancel Environments	Show H	lelp >:	>

De esta manera se obtiene la capa definitiva de Áreas Núcleo denominada CAnu2018v1.tif.

4.3. Corredores de Conectividad

4.3.1 Matriz de Corriente Eléctrica - CircuitScape

Al tener la matriz general de resistencia y las áreas núcleo, se procede a calcular los corredores de conectividad. Inicialmente se genera la matriz de corriente eléctrica en el software CircuitScape que permite observar, en una matriz raster, la distribución de la carga eléctrica en la zona de estudio regional. El proceso a seguir se puede identificar a continuación:

Con las capas obtenidas en la generación de la matriz de resistencia y áreas núcleo se procede a Resamplearlas pasándolas de una resolución espacial de 30 metros a 500 metros, Es importante mencionar que se tuvo que resamplear la información a tamaño de pixel de 500 metros toda vez que el CircuitScape requiere una Giga de memoria por cada Millón de píxeles, por lo que al tener la matriz

a 30 metros se tienen aproximadamente 500 millones de puntos lo que dificultaría en gran medida el resultado requerido. Para el proceso de resampleo se utiliza la herramienta **Data Management Tools** – **Raster – Raster Processing – Resample**.

🔨 Resample — 🗆 🗙	✓ Resample - □ ×
Input Raster CMgr2018v1.tif Output Raster Dataset F:\FREELANCE\PATRIMONIO_NATURAL\GEF5_Corredores\6 SIG\6 Geodata\Raster\CMgr2018v] Cutput Cell Size (optiona) Same as layer CAnu2018v1_500m.tif	Input Raster CAnu2018v1.tif Output Raster Dataset F:FREELANCE'PATRIMONIO_NATURAL \GEF5_Corredores\6 SIG\6 Geodata\Raster\CAnu2018v Output Cell Size (optional) V
X Y 500 Y 500	х
Resampling Technique (optional) NEAREST V	Resampling Technique (optional) NEAREST V
OK Cancel Environments Show Help >>	OK Cancel Environments Show Help >>

NOTA: Las capas resampleadas a 500 metros se guardan con extensión ASC (ASCII).

Para correr el proceso solamente se deben ingresar las capas CMgr2018v1_500.asc y CAnu2018v1_500.asc que corresponden a Matriz General de Resistencia y Áreas Núcleo. Se abre la interfaz del software CircuitScape y en el campo Input Resistance Data se agrega la matriz de resistencia (CMgr2018v1_500.asc) y en el campo Focal Node location file se agregan las áreas núcleo (CAnu2018v1_500.asc), por último, se especifica la carpeta donde van a almacenarse los resultados y se parametriza el proceso así:

2m Circuitscape	- X
Elle Options Help	
Data type and modeling mode	
Step 1: Choose your input data type Raster Step 2: Choose a modeling mode Pairwise: iterate across all pairs in focal node file	Advanced mode options Current source file (Browse for a current source file) Browse
Input resistance data Raster resistance map or network/graph FNDANIEL/CIRCUTSCAPE/CMg2018/1_500 asc Browse	(Browse for a ground point file) Browse Data represent conductances instead of resistances to ground
Data represent conductances instead of resistances	Output options Base output file name
Pairwise mode options Focal node location file F-DANELDURCUITSCAPEVCAnu2016v1_500.asc F-DANELDURCUITSCAPEVCAnu2016v1 Browse Number of parallel processors to use:	P COVIET. CORCUT SCAPE RESULTION RECEIPENDS Browse Output maps to create: Output maps RUN Votage maps RUN
Log window Level IFFO V CLog comple	don times Log resource usage into [Gearing]
Version 4.0.5 Ready.	Please send feedback to the Circuitscape User Group

Como resultado del procesamiento se obtiene la matriz de Corriente Eléctrica **CCoe2018v1_Pre**, al ser una matriz en donde se encuentran valores altos en el área contenida dentro de los polígonos de las Áreas Núcleo se procede a borrar de la matriz de corriente las áreas núcleo para solo así dejar los valores que se encuentran entre estas áreas. El procedimiento para borrar las áreas se hace con la herramienta **Analysis Tools – Overlay – Erase**.

🔨 Erase		
Input Features		
CCoe2018v1_Pre	1	
Erase Features		
CAnu2018v1	2	
Output Feature Class		
F:\FREELANCE\PATRIMONIO_NATURAL\GEF5_Corredores\6 SIG\6 Geodata\Raster\CCoe2018v	B	
XY Tolerance (optional)		
Decimal degrees	\sim	
		\sim
OK Cancel Environments << His	de Help	

De esta manera, se obtiene la Matriz de Corriente Eléctrica **CCoe2018v1** que representa los flujos de energía en el área de estudio regional.

4.3.2 Corredores de Conectividad – Linkage Mapper

Con el fin de corroborar y automatizar el proceso de generación de Corredores de Conectividad se procede a utilizar el software Linkage Mapper en el cual se generan automáticamente las Rutas Críticas de Conectividad y los Corredores de Conectividad.

En el Toolbox para ArcGIS del Linkage Mapper se corre el proceso Linkage Mapper Toolkit – Linkage Pathways Tool – Build Network and Map Linkages.

💐 Build Network and Map Linkages	_			×
Project Directory				
F:\Linkage_Mapper			6	\sim
Core Area Feature Class				
CAnu2018v1		-	6	
Core Area Field Name				
COD			\sim	
Resistance Raster				
CMgr2018v1_500.tif		-	2	
Barran Chana				
rocess steps				
✓ Step 1 - Identify Adjacent Core Areas				
Step 2 - Construct a Network of Core Areas				
Network Adjacency Method				
Cost-Weighted & Euclidean			\sim	
Core Area Distances Text File. Leave blank to generate (ArcInfo license only)				
			1	
✓ Step 3 - Calculate Cost-Weighted Distances and Least Cost Paths ✓ Drop Convidors that Intersect Core Areas				
Step 4 - Prune Network Using Options Below (optional)				
Option A - Maxium Number of Connected Nearest Neighbors				
4			\sim	_
Option B - Nearest Neighbor Measurement Unit				
Cost-Weighted			\sim	
Option C - Connect Neighboring Constellations				
Step 5 - Calculate, Normalize and Mosaic Corridors				
Truncate Corridors				
Cost-Weighted Distance Threshold to Use in Truncating Corridors				\checkmark
		200	000	
<			>	
OK Cancel Environments	i	Show H	elp >>	•

De esta manera se generan 2 capas básicas: CCon2018v1_Ejes.shp y CCon2018v1_Franjas.tif, las cuales representan las rutas críticas o de menor costo en la conectividad ecológica entre áreas núcleo y las franjas de corredores por donde el flujo de energía se mueve de manera óptima.

4.3.3 Franjas de Conectividad

Teniendo las franjas de conectividad con el Linkage Mapper se procede a ajustar los corredores regionales mediante el uso de la capa de Zonificación Hidrográfica del MADS. El proceso de edición se hace teniendo en cuenta la Matriz de Corriente Eléctrica generada en CircuitScape (CCoe2018v1) y clasificándola en 10 clases.

se hizo una edición de polígonos intersectados con las Franjas de Conectividad del Linkage Mapper en donde se tuvieron en cuenta 3 rangos de Corriente Eléctrica; Es decir, de las Subzonas hidrográficas seleccionadas se editaron los límites teniendo en cuenta los tres rangos contenidos de la matriz de corriente eléctrica. Dentro de estos análisis se tuvo en cuenta la necesidad de la Mesa Técnica en establecer franjas que permitan conectar las regiones Andes-Amazonía, Amazonía-Amazonía y Orinoquia-Amazonía y bajo zonas o unidades de Planeación territorial, obteniendo como resultado unos polígonos asociados a Cuencas Hidrográficas que permiten identificar los instrumentos de planificación y los actores responsables de la implementación de los análisis de conectividad.

Las franjas resultantes son:

FORMATO: PROTOCOLO

Código: FP-CCOB-4

Versión: 1.0

Franja de Conectividad	Nombre Subzona Hidrográfica	Priorizado Mesa Técnica	Área (Has)
Arco Amortiguación Chiribiquete	Río Camuya	SI	87 758,23
Arco Amortiguación Chiribiquete	Río Caguan Bajo	SI	86 441,39
Arco Amortiguación Chiribiquete	Río Tunia ó Macayá	SI	165 850,45
Arco Amortiguación Chiribiquete	Alto Yarí	SI	339 596,86
Chiribiquete-AMEM	Alto Guaviare	SI	293 022,68
Chiribiquete-AMEM	Rio Losada	SI	310 339,71
Chiribiquete-AMEM	Río Guayabero	SI	23 946,59
Chiribiquete-Nukak	Río Itilla	SI	159 836,93
Chiribiquete-Nukak	Río Unilla	SI	214 636,92
Chiribiquete-Nukak	Río Inírida Alto	SI	444 448,60
Chiribiquete-Nukak	Alto Vaupés	SI	378 444,16
Chiribiquete-Paya	Río Caqueta Medio	NO	27 966,29
Paya-Chiribiquete (BC)	Río Peneya	SI	126 127,19
Paya-Chiribiquete (BC)	Río Caguan Bajo	SI	318 769,15
Paya-VillaCatalina	Río Mecaya	NO	220 892,96
Transición Orinoquia	Bajo Guaviare	SI	142 120,95
Transición Orinoquia	Bajo Guaviare	SI	20 607,68
Transición Orinoquia	Bajo Guaviare	SI	82 160,27
Trapecio-Chiribiquete	Río Putumayo Bajo	NO	285 431,50

La distribución de las Franjas de Conectividad definitivas se representa a continuación:

